Uniform nonparametric inference for time series

被引:16
|
作者
Li, Jia [1 ]
Liao, Zhipeng [2 ]
机构
[1] Duke Univ, Dept Econ, Durham, NC 27708 USA
[2] Univ Calif Los Angeles, Dept Econ, Log Angeles, CA 90095 USA
基金
美国国家科学基金会;
关键词
Martingale difference; Mixingale; Series estimation; Specification test; Strong approximation; Uniform inference; ASYMPTOTIC NORMALITY; GAUSSIAN APPROXIMATION; EQUILIBRIUM UNEMPLOYMENT; CONVERGENCE-RATES; CYCLICAL BEHAVIOR; JOB DESTRUCTION; HETEROSKEDASTICITY; ESTIMATORS; FLUCTUATIONS; CONSISTENCY;
D O I
10.1016/j.jeconom.2019.09.011
中图分类号
F [经济];
学科分类号
02 ;
摘要
This paper provides the first result for the uniform inference based on nonparametric series estimators in a general time-series setting. We develop a strong approximation theory for sample averages of mixingales with dimensions growing with the sample size. We use this result to justify the asymptotic validity of a uniform confidence band for series estimators and show that it can also be used to conduct nonparametric specification test for conditional moment restrictions. New results on the validity of heteroskedasticity and autocorrelation consistent (HAC) estimators with increasing dimension are established for making feasible inference. An empirical application on the unemployment volatility puzzle for the search and matching model is provided as an illustration. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页码:38 / 51
页数:14
相关论文
共 50 条
  • [1] Uniform nonparametric inference for time series using Stata
    Li, Jia
    Liao, Zhipeng
    Gao, Mengsi
    STATA JOURNAL, 2020, 20 (03): : 706 - 720
  • [2] SIMULTANEOUS NONPARAMETRIC INFERENCE OF TIME SERIES
    Liu, Weidong
    Wu, Wei Biao
    ANNALS OF STATISTICS, 2010, 38 (04): : 2388 - 2421
  • [3] Nonparametric inference for unbalanced time series data
    Linton, O
    ECONOMETRIC THEORY, 2005, 21 (01) : 143 - 157
  • [4] NONPARAMETRIC INFERENCE FOR CONDITIONAL QUANTILES OF TIME SERIES
    Xu, Ke-Li
    ECONOMETRIC THEORY, 2013, 29 (04) : 673 - 698
  • [5] Nonparametric inference for ergodic, stationary time series
    Morvai, G
    Yakowitz, S
    Gyorfi, L
    ANNALS OF STATISTICS, 1996, 24 (01): : 370 - 379
  • [6] Nonparametric causal inference for bivariate time series
    McCracken, James M.
    Weigel, Robert S.
    PHYSICAL REVIEW E, 2016, 93 (02)
  • [7] NONPARAMETRIC INFERENCE OF QUANTILE CURVES FOR NONSTATIONARY TIME SERIES
    Zhou, Zhou
    ANNALS OF STATISTICS, 2010, 38 (04): : 2187 - 2217
  • [8] UNIFORM CONSISTENCY FOR NONPARAMETRIC ESTIMATORS IN NULL RECURRENT TIME SERIES
    Gao, Jiti
    Kanaya, Shin
    Li, Degui
    Tjostheim, Dag
    ECONOMETRIC THEORY, 2015, 31 (05) : 911 - 952
  • [9] Analyzing Single-Molecule Time Series via Nonparametric Bayesian Inference
    Hines, Keegan E.
    Bankston, John R.
    Aldrich, Richard W.
    BIOPHYSICAL JOURNAL, 2015, 108 (03) : 540 - 556
  • [10] Sieve inference on possibly misspecified semi-nonparametric time series models
    Chen, Xiaohong
    Liao, Zhipeng
    Sun, Yixiao
    JOURNAL OF ECONOMETRICS, 2014, 178 : 639 - 658