The characterization of the glucono-δ-lactone-carboxylic acid equilibrium in the products of chitin-active lytic polysaccharide monooxygenases

被引:1
|
作者
Harmsen, Rianne A. G. [1 ]
Tuveng, Tina R. [1 ]
Stenstrom, Yngve H. [1 ]
Eijsink, Vincent G. H. [1 ]
Sorlie, Morten [1 ]
机构
[1] Norwegian Univ Life Sci NMBU, Dept Chem Biotechnol & Food Sci, PO 5003, N-1432 As, Norway
来源
关键词
LPMO; Auxiliary activities; Glycoside hydrolases; Inhibition; Glucono-delta-lactone; Aldonic acid;
D O I
10.1016/j.jct.2016.11.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
Modern biorefining of cellulose and chitin requires the use of glycoside hydrolases (GHs) and lytic polysaccharide monooxygenases (LPMOs). LPMOs use molecular oxygen and two electrons from an external electron donor to cleave glycosidic bonds, by a mechanism that entails oxidization of the C1-carbon of glucose and N-acetylglucosamine, respectively, to produce delta-lactones. The equilibrium between these delta-lactones and their aldonic acids, which dominate at neutral pH, is of importance, since the former are potential inhibitors of GHs. We have used C-13 NMR to obtain more insight into the properties of the oxidized compounds and have studied the properties of N,N',N ''-triacetylchitotrionic acid, using C-13 NMR at various pHs and temperatures. Thus, we have determined the pK(a) of the aldonic acid to be 2.88 +/- 0.05. The equilibrium constant for lactone at pH 1.41 was 0.137 +/- 0.008 corresponding to a Delta G degrees of 4.9 +/- 0.2 kJ/mol. Using Van't Hoff analysis Delta H degrees and Delta S degrees were determined to be 19.5 +/- 1.6 kJ/mol and 49.0 +/- 5.4 J/K mol, respectively. (C) 2016 Elsevier Ltd.
引用
收藏
页码:10 / 15
页数:6
相关论文
共 6 条
  • [1] Chitin-Active Lytic Polysaccharide Monooxygenases
    Courtade, Gaston
    Aachmann, Finn L.
    TARGETING CHITIN-CONTAINING ORGANISMS, 2019, 1142 : 115 - 129
  • [2] Chitin-Active Lytic Polysaccharide Monooxygenases Are Rare in Cellulomonas Species
    Li, James
    Goddard-Borger, Ethan D.
    Raji, Olanrewaju
    Saxena, Hirak
    Solhi, Laleh
    Mathieu, Yann
    Master, Emma R.
    Wakarchuk, Warren W.
    Brumer, Harry
    APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 2022, 88 (15)
  • [3] Analysis of Four Chitin-Active Lytic Polysaccharide Monooxygenases from Streptomyces griseus Reveals Functional Variation
    Nakagawa, Yuko S.
    Kudo, Madoka
    Onodera, Reiya
    Ang, Lily Zuin Ping
    Watanabe, Takeshi
    Totani, Kazuhide
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (47) : 13641 - 13650
  • [4] The crystal structure of CbpD clarifies substrate-specificity motifs in chitin-active lytic polysaccharide monooxygenases
    Dade, Christopher M.
    Douzi, Badreddine
    Cambillau, Christian
    Ball, Genevieve
    Voulhoux, Rome
    Forest, Katrina T.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2022, 78 : 1064 - 1078
  • [5] Comparative Study of Two Chitin-Active and Two Cellulose-Active AA10-Type Lytic Polysaccharide Monooxygenases
    Forsberg, Zarah
    Rohr, Asmund Kjendseth
    Mekasha, Sophanit
    Andersson, K. Kristoff
    Eijsink, Vincent G. H.
    Vaaje-Kolstad, Gustav
    Sorlie, Morten
    BIOCHEMISTRY, 2014, 53 (10) : 1647 - 1656
  • [6] Structural and functional characterization of a small chitin-active lytic polysaccharide monooxygenase domain of a multi-modular chitinase from Jonesia denitrificans
    Mekasha, Sophanit
    Forsberg, Zarah
    Dalhus, Bjorn
    Bacik, John-Paul
    Choudhary, Swati
    Schmidt-Dannert, Claudia
    Vaaje-Kolstad, Gustav
    Eijsink, Vincent G. H.
    FEBS LETTERS, 2016, 590 (01) : 34 - 42