Orlicz-Hardy spaces and their duals

被引:59
|
作者
Nakai, Eiichi [1 ]
Sawano, Yoshihiro [2 ]
机构
[1] Ibaraki Univ, Dept Math, Mito, Ibaraki 3108512, Japan
[2] Tokyo Metropolitan Univ, Dept Math & Informat Sci, Tokyo 1920397, Japan
基金
日本学术振兴会;
关键词
Hardy space; Orlicz space; atomic decomposition; Campanato space; bounded mean oscillation; REAL-VARIABLE CHARACTERIZATIONS; STRONGLY LIPSCHITZ-DOMAINS; LITTLEWOOD-PALEY THEORY; FRACTIONAL-INTEGRATION; CAMPANATO SPACES; MORREY SPACES; OPERATORS; INEQUALITIES; JACOBIANS;
D O I
10.1007/s11425-014-4798-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish the theory of Orlicz-Hardy spaces generated by a wide class of functions. The class will be wider than the class of all the N-functions. In particular, we consider the non-smooth atomic decomposition. The relation between Orlicz-Hardy spaces and their duals is also studied. As an application, duality of Hardy spaces with variable exponents is revisited. This work is different from earlier works about Orlicz-Hardy spaces H (I broken vertical bar)(a"e (n) ) in that the class of admissible functions I center dot is largely widened. We can deal with, for example, with p (1), p (2) a (0,a) and q (1), q (2) a (-a,a), where we shall establish the boundedness of the Riesz transforms on H (I broken vertical bar)(a"e (n) ). In particular, I center dot is neither convex nor concave when 0 < p (1) < 1 < p (2) < a, 0 < p (2) < 1 < p (1) < a or p (1) = p (2) = 1 and q (1), q (2) > 0. If I broken vertical bar(r) a parts per thousand r(log(e+r)) (q) , then H (I broken vertical bar)(a"e (n) ) = H(log H) (q) (a"e (n) ). We shall also establish the boundedness of the fractional integral operators I (alpha) of order alpha a (0,a). For example, I (alpha) is shown to be bounded from H(log H)(1 - alpha/n) (a"e (n) ) to L (n/(n - alpha))(log L)(a"e (n) ) for 0 < alpha < n.
引用
收藏
页码:903 / 962
页数:60
相关论文
共 50 条
  • [1] Orlicz-Hardy spaces and their duals
    Eiichi Nakai
    Yoshihiro Sawano
    [J]. Science China Mathematics, 2014, 57 : 903 - 962
  • [2] Orlicz-Hardy spaces and their duals
    NAKAI Eiichi
    SAWANO Yoshihiro
    [J]. Science China Mathematics, 2014, 57 (05) : 903 - 962
  • [3] NONCOMMUTATIVE ORLICZ-HARDY SPACES
    阿布都艾尼·阿不都热西提
    吐尔德别克
    [J]. Acta Mathematica Scientia, 2014, 34 (05) : 1584 - 1592
  • [4] NONCOMMUTATIVE ORLICZ-HARDY SPACES
    Abdurexit, Abdugheni
    Bekjan, Turdebek N.
    [J]. ACTA MATHEMATICA SCIENTIA, 2014, 34 (05) : 1584 - 1592
  • [5] Martingale Orlicz-Hardy spaces
    Miyamoto, Takashi
    Nakai, Eiichi
    Sadasue, Gaku
    [J]. MATHEMATISCHE NACHRICHTEN, 2012, 285 (5-6) : 670 - 686
  • [6] Orlicz-Hardy spaces associated with operators
    RenJin Jiang
    DaChun Yang
    Yuan Zhou
    [J]. Science in China Series A: Mathematics, 2009, 52
  • [7] Orlicz-Hardy spaces associated with operators
    JIANG RenJin
    Laboratory of Mathematics and Complex Syst- ems
    [J]. Science China Mathematics, 2009, (05) : 1042 - 1080
  • [8] Orlicz-Hardy spaces associated with operators
    JIANG RenJin YANG DaChun ZHOU Yuan School of Mathematical Sciences Beijing Normal University
    Laboratory of Mathematics and Complex Syst ems Ministry of Education Beijing China
    [J]. Science in China(Series A:Mathematics)., 2009, 52 (05) - 1080
  • [9] Interpolation of martingale Orlicz-Hardy spaces
    Long, L.
    Tian, H.
    Zhou, D.
    [J]. ACTA MATHEMATICA HUNGARICA, 2021, 163 (01) : 276 - 294
  • [10] On noncommutative weak Orlicz-Hardy spaces
    Bekjan, Turdebek N.
    Raikhan, Madi
    [J]. ANNALS OF FUNCTIONAL ANALYSIS, 2022, 13 (01)