Using deep learning to predict anti-PD-1 response in melanoma and lung cancer patients from histopathology images

被引:39
|
作者
Hu, Jing [1 ]
Cui, Chuanliang [2 ]
Yang, Wenxian [1 ]
Huang, Lihong [1 ]
Yu, Rongshan [1 ]
Liu, Siyang [3 ,4 ,5 ]
Kong, Yan [2 ]
机构
[1] Xiamen Univ, Sch Informat, Aginome XMU Joint Lab, Xiamen, Peoples R China
[2] Peking Univ Canc Hosp & Inst, Dept Renal Canc & Melanoma, Minist Educ, Key Lab Carcinogenesis & Translat Res, Beijing, Peoples R China
[3] Guangdong Prov Peoples Hosp, Guangdong Prov Key Lab Translat Med Lung Canc, Guangdong Lung Canc Inst, Guangzhou, Peoples R China
[4] Guangdong Acad Med Sci, Guangzhou, Peoples R China
[5] South China Univ Technol, Sch Med, Guangzhou, Peoples R China
来源
TRANSLATIONAL ONCOLOGY | 2021年 / 14卷 / 01期
基金
北京市自然科学基金; 国家重点研发计划; 中国国家自然科学基金;
关键词
Deep learning; Immunotherapy; H&E slides; PATHOLOGY;
D O I
10.1016/j.tranon.2020.100921
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: Recent studies showed that immune-checkpoint blockade (ICB) has significantly improved clinical outcomes of melanoma and lung cancer patients. However, only a small subset of patients can benefit from ICB. Deep learning has been successfully implemented in complementary clinical diagnosis. The aim of this study is to demonstrate the potential of deep learning to facilitate the prediction of anti-PD-1 response from H&E images directly. Methods: In this study, 190 H&E slides of melanoma were segmented into 256x256 tiles which were used as the training set for the convolutional neural network (CNN). Additional 54 melanoma and 55 lung cancer H&E slides were collected as independent testing sets. Findings: An AUC of 0.778(95% CI: 63.8%-90.5%) was achieved for 54 melanoma testing samples with 15(65.2%) responders and 23(74.2%) non-responders correctly classified. We also obtained an AUC of 0.645(95% CI: 49.4%-78.4%) for 55 lung cancer samples. Interpretation: To our knowledge, this is the first study of using deep learning to determine patients' anti-PD-1 response from H&E slides directly. Our CNN model achieved the state-of-the-art performance and has the potential to screen ICB beneficial patients in routine clinical practice.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Proteomic Profiling of Advanced Melanoma Patients to Predict Therapeutic Response to Anti-PD-1 Therapy
    Zila, Nina
    Eichhoff, Ossia M.
    Steiner, Irene
    Mohr, Thomas
    Bileck, Andrea
    Cheng, Phil F.
    Leitner, Alexander
    Gillet, Ludovic
    Sajic, Tatjana
    Goetze, Sandra
    Friedrich, Betty
    Bortel, Patricia
    Strobl, Johanna
    Reitermaier, Rene
    Hogan, Sabrina A.
    Martinez Gomez, Julia M.
    Staeger, Ramon
    Tuchmann, Felix
    Peters, Sophie
    Stary, Georg
    Kuttke, Mario
    Elbe-Buerger, Adelheid
    Hoeller, Christoph
    Kunstfeld, Rainer
    Weninger, Wolfgang
    Wollscheid, Bernd
    Dummer, Reinhard
    French, Lars E.
    Gerner, Christopher
    Aebersold, Ruedi
    Levesque, Mitchell P.
    Paulitschke, Verena
    [J]. CLINICAL CANCER RESEARCH, 2024, 30 (01) : 159 - 175
  • [2] MicroRNAs that predict the effectiveness of anti-PD-1 therapies in patients with advanced melanoma
    Nakahara, Satoshi
    Fukushima, Satoshi
    Okada, Etsuko
    Morinaga, Jun
    Kubo, Yosuke
    Tokuzumi, Aki
    Matsumoto, Sayaka
    Tsuruta-Kadohisa, Mina
    Kimura, Toshihiro
    Kuriyama, Haruka
    Miyashita, Azusa
    Kajihara, Ikko
    Jinnin, Masatoshi
    Ihn, Hironobu
    [J]. JOURNAL OF DERMATOLOGICAL SCIENCE, 2020, 97 (01) : 77 - 79
  • [3] PDCD1 Polymorphisms May Predict Response to Anti-PD-1 Blockade in Patients With Metastatic Melanoma
    Parakh, Sagun
    Musafer, Ashan
    Paessler, Sabrina
    Witkowski, Tom
    Suen, Connie S. N. Li Wai
    Tutuka, Candani S. A.
    Carlino, Matteo S.
    Menzies, Alexander M.
    Scolyer, Richard A.
    Cebon, Jonathan
    Dobrovic, Alexander
    Long, Georgina V.
    Klein, Oliver
    Behren, Andreas
    [J]. FRONTIERS IN IMMUNOLOGY, 2021, 12
  • [4] Proteomic profiling to predict therapeutic response to anti-PD-1 therapy in advanced melanoma
    Zila, N.
    Levesque, M.
    Paulitschke, V.
    [J]. JOURNAL DER DEUTSCHEN DERMATOLOGISCHEN GESELLSCHAFT, 2022, 20 : 37 - 37
  • [5] Optimizing PD-1 to PD-L1 proximity assays to predict response in patients with advanced melanoma receiving anti-PD-1
    Green, B.
    Will, E.
    Engle, L.
    Deutsch, J. S.
    Lipson, E.
    Szalay, A.
    Sunshine, J. C.
    Taube, J.
    [J]. JOURNAL OF INVESTIGATIVE DERMATOLOGY, 2023, 143 (05) : S32 - S32
  • [6] Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients
    Gopalakrishnan, V.
    Spencer, C. N.
    Nezi, L.
    Reuben, A.
    Andrews, M. C.
    Karpinets, T. V.
    Prieto, P. A.
    Vicente, D.
    Hoffman, K.
    Wei, S. C.
    Cogdill, A. P.
    Zhao, L.
    Hudgens, C. W.
    Hutchinson, D. S.
    Manzo, T.
    de Macedo, M. Petaccia
    Cotechini, T.
    Kumar, T.
    Chen, W. S.
    Reddy, S. M.
    Sloane, R. Szczepaniak
    Galloway-Pena, J.
    Jiang, H.
    Chen, P. L.
    Shpall, E. J.
    Rezvani, K.
    Alousi, A. M.
    Chemaly, R. F.
    Shelburne, S.
    Vence, L. M.
    Okhuysen, P. C.
    Jensen, V. B.
    Swennes, A. G.
    McAllister, F.
    Sanchez, E. Marcelo Riquelme
    Zhang, Y.
    Le Chatelier, E.
    Zitvogel, L.
    Pons, N.
    Austin-Breneman, J. L.
    Haydu, L. E.
    Burton, E. M.
    Gardner, J. M.
    Sirmans, E.
    Hu, J.
    Lazar, A. J.
    Tsujikawa, T.
    Diab, A.
    Tawbi, H.
    Glitza, I. C.
    [J]. SCIENCE, 2018, 359 (6371) : 97 - 103
  • [7] Changes in serum IL8 levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small cell lung cancer patients
    Sanmamed, M. F.
    Perez-Gracia, J. L.
    Fusco, J. P.
    Onate, C.
    Perez, G.
    Alfaro, C.
    Martin-Algarra, S.
    Gonzalez, A.
    Rodriguez-Ruiz, M. E.
    Andueza, M. P.
    Wang, J.
    Bacchiocchi, A.
    Halaban, R.
    Kluger, H.
    Sznol, M.
    Melero, I.
    [J]. ANNALS OF ONCOLOGY, 2016, 27
  • [8] Circulating microRNAs predict the response to anti-PD-1 therapy in non-small cell lung cancer
    Fan, Jinshuo
    Yin, Zhongyuan
    Xu, Juanjuan
    Wu, Feng
    Huang, Qi
    Yang, Lin
    Jin, Yang
    Yang, Guanghai
    [J]. GENOMICS, 2020, 112 (02) : 2063 - 2071
  • [9] Tissue biomarkers of response to anti-PD-1 immunotherapies in melanoma
    Adam, Julien
    Tomasic, Gorana
    Robert, Caroline
    [J]. ANNALES DE PATHOLOGIE, 2017, 37 (01) : 55 - 60
  • [10] Overt Thyroid Dysfunction and Anti-Thyroid Antibodies Predict Response to Anti-PD-1 Immunotherapy in Cancer Patients
    Basak, Edwin A.
    van der Meer, Jan W. M.
    Hurkmans, Daan P.
    Schreurs, Marco W. J.
    Oomen-de Hoop, Esther
    van der Veldt, Astrid A. M.
    Bins, Sander
    Joosse, Arjen
    Koolen, Stijn L. W.
    Debets, Reno
    Peeters, Robin P.
    Aerts, Joachim G. J., V
    Mathijssen, Ron H. J.
    Medici, Marco
    [J]. THYROID, 2020, 30 (07) : 966 - 973