Well-Posedness of Boundary Layer Equations for Time-Dependent Flow of Non-Newtonian Fluids

被引:7
|
作者
Renardy, Michael [1 ]
Wang, Xiaojun [2 ]
机构
[1] Virginia Tech, Dept Math, Blacksburg, VA 24061 USA
[2] Penn State Univ, Dept Math, University Pk, PA 16802 USA
基金
美国国家科学基金会;
关键词
High Weissenberg number limit; viscoelastic flow; boundary layer; VISCOELASTIC SHEAR FLOWS; CONVECTED MAXWELL FLUID; NAVIER-STOKES EQUATION; ZERO-VISCOSITY LIMIT; DIFFERENTIAL-OPERATORS; INFINITE WEISSENBERG; REYNOLDS-NUMBERS; STABILITY;
D O I
10.1007/s00021-013-0150-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the flow of an upper convected Maxwell fluid in the limit of high Weissenberg and Reynolds number. In this limit, the no-slip condition cannot be imposed on the solutions. We derive equations for the resulting boundary layer and prove the well-posedness of these equations. A transformation to Lagrangian coordinates is crucial in the argument.
引用
收藏
页码:179 / 191
页数:13
相关论文
共 50 条
  • [1] Well-Posedness of Boundary Layer Equations for Time-Dependent Flow of Non-Newtonian Fluids
    Michael Renardy
    Xiaojun Wang
    Journal of Mathematical Fluid Mechanics, 2014, 16 : 179 - 191
  • [2] Well-posedness for a class of compressible non-Newtonian fluids equations
    Al Taki, Bilal
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 349 : 138 - 175
  • [3] Local well-posedness and singularity formation in non-Newtonian compressible fluids
    Lerman, Ariel
    Disconzi, Marcelo M.
    Noronha, Jorge
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (01)
  • [4] Well-posedness for heat conducting non-Newtonian micropolar fluid equations
    Wang, Changjia
    Duan, Yuxi
    ELECTRONIC RESEARCH ARCHIVE, 2024, 32 (02): : 897 - 914
  • [5] Well-posedness of the boundary layer equations
    Lombardo, MC
    Cannone, M
    Sammartino, M
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2003, 35 (04) : 987 - 1004
  • [6] Remark on the Local Well-Posedness of Compressible Non-Newtonian Fluids with Initial Vacuum
    Al Baba, Hind
    Al Taki, Bilal
    Hussein, Amru
    JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2024, 26 (04)
  • [7] Analytical Investigation of Time-Dependent Two-Dimensional Non-Newtonian Boundary Layer Equations
    Barna, Imre Ferenc
    Matyas, Laszlo
    Hriczo, Krisztian
    Bognar, Gabriella
    MATHEMATICS, 2024, 12 (23)
  • [8] On the well-posedness of weakly hyperbolic equations with time-dependent coefficients
    Garetto, Claudia
    Ruzhansky, Michael
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2012, 253 (05) : 1317 - 1340
  • [9] Similarity Solutions for Boundary Layer Flow of Non-Newtonian Fluids
    Bognar, Gabriella
    LATEST TRENDS ON ENGINEERING MECHANICS, STRUCTURES, ENGINEERING GEOLOGY, 2010, : 19 - 19
  • [10] On energy boundary layer equations in power law non-Newtonian fluids
    Zheng Lian-cun
    Zhang Xin-xin
    JOURNAL OF CENTRAL SOUTH UNIVERSITY OF TECHNOLOGY, 2008, 15 (Suppl 1): : 5 - 8