LP-Liouville theorems on complete smooth metric measure spaces

被引:20
|
作者
Wu, Jia-Yong [1 ]
机构
[1] Shanghai Maritime Univ, Dept Math, Shanghai 201306, Peoples R China
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2014年 / 138卷 / 04期
关键词
Bakry-Emery Ricci curvature; f-Laplacian; f-heat kernel; Harnack inequality; Liouville theorem; COMPLETE RIEMANNIAN-MANIFOLDS; EMERY-RICCI TENSOR; HEAT-EQUATION; CURVATURE; GEOMETRY; KERNEL; DIMENSION; OPERATORS; RIGIDITY; SOLITONS;
D O I
10.1016/j.bulsci.2013.07.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study some function-theoretic properties on a complete smooth metric measure space (M, g,e(-f) dv) with Bakry-Emery Ricci curvature bounded from below. We derive a Moser's parabolic Harnack inequality for the f-heat equation, which leads to upper and lower Gaussian bounds on the f-heat kernel. We also prove L-P-Liouville theorems in terms of the lower bound of Bakry-Emery Ricci curvature and the bound of function f, which generalize the classical Ricci curvature case and the N-Bakry-Emery Ricci curvature case. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:510 / 539
页数:30
相关论文
共 50 条