Uniform in bandwidth consistency of nonparametric regression based on copula representation

被引:13
|
作者
Bouzebda, Salim [1 ]
Elhattab, Issam [2 ]
Seck, Cheikh Tidiane [3 ]
机构
[1] Univ Technol Compiegne, Sorbonne Univ, LMAC Lab Appl Math Compiegne, Compiegne, France
[2] Hassan II Univ Casablanca, ENCG, Casablanca, Morocco
[3] Univ Alioune Diop, EReSMA Equipe Rech Stat & Modeles Aleatoires, Bambey, Senegal
关键词
Dependence function; Uniform consistency; Copula representation; Kernel-type-estimator; Uniform in bandwidth; Empirical process; KERNEL DENSITY ESTIMATORS;
D O I
10.1016/j.spl.2018.01.021
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We establish in this paper the uniform-in-bandwidth consistency for general kernel-type estimators of regression. More precisely, we investigate the regression estimator based on copula representation. The asymptotic properties are driven by a U-statistic relying on the methods developed in Dony and Mason (2008). (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:173 / 182
页数:10
相关论文
共 50 条