Matrices satisfying quadratic equations

被引:0
|
作者
Gautheir, N
Gosselin, JB
机构
来源
FIBONACCI QUARTERLY | 2003年 / 41卷 / 05期
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:475 / 477
页数:3
相关论文
共 50 条
  • [1] PROPERTY OF FORCE CONSTANT MATRICES SATISFYING VIBRATIONAL EQUATIONS OF 2 ISOTOPIC SPECIES
    JORDANOV, B
    DOKLADI NA BOLGARSKATA AKADEMIYA NA NAUKITE, 1972, 25 (08): : 1073 - 1076
  • [2] MATRICES SATISFYING SILJAKS CONJECTURE
    DATTA, BN
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (04): : A428 - A429
  • [3] Matrices satisfying Regular Minimality
    Trendtel, Matthias
    Uenlue, Ali
    Dzhafarov, Ehtibar N.
    FRONTIERS IN PSYCHOLOGY, 2010, 1
  • [4] Quadratic functions satisfying an additional equation
    Amou, M.
    ACTA MATHEMATICA HUNGARICA, 2020, 162 (01) : 40 - 51
  • [5] Quadratic functions satisfying an additional equation
    M. Amou
    Acta Mathematica Hungarica, 2020, 162 : 40 - 51
  • [6] The inertia of matrices and quadratic forms, conditionally definite matrices, the separation of the roots of algebraic equations, and MAPLE procedures
    Kh. D. Ikramov
    N. V. Savel’eva
    Programming and Computer Software, 2000, 26 : 23 - 24
  • [7] The inertia of matrices and quadratic forms, conditionally definite matrices, the separation of the roots of algebraic equations, and MAPLE procedures
    Ikramov, KD
    Savel'eva, NV
    PROGRAMMING AND COMPUTER SOFTWARE, 2000, 26 (01) : 23 - 24
  • [8] SOLVING COMPLEX QUADRATIC EQUATIONS WITH FULL-RANK RANDOM GAUSSIAN MATRICES
    Huang, Shuai
    Gupta, Sidharth
    Dokmanic, Ivan
    2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5596 - 5600
  • [9] Matrices and spectra satisfying the Newton inequalities
    Johnson, C. R.
    Marijuan, C.
    Pisonero, M.
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2009, 430 (11-12) : 3030 - 3046
  • [10] Consecutive binomial coefficients satisfying a quadratic relation
    Luca, F
    Szalay, L
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2006, 69 (1-2): : 185 - 194