Distributed Particle Filtering via Optimal Fusion of Gaussian Mixtures

被引:19
|
作者
Li, Jichuan [1 ]
Nehorai, Arye [1 ]
机构
[1] Washington Univ, Preston M Green Dept Elect & Syst Engn, St Louis, MO 63130 USA
关键词
Average consensus; data fusion; distributed particle filtering; Gaussian mixture model; importance sampling; CONSENSUS; SYNCHRONIZATION; LIKELIHOOD; ALGORITHMS; TRACKING;
D O I
10.1109/TSIPN.2017.2694318
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We propose a distributed particle filtering algorithm based on an optimal fusion rule for local posteriors. We implement the optimal fusion rule in a distributed and iterative fashion via an average consensus algorithm. We approximate local posteriors as Gaussian mixtures and fuse Gaussian mixtures through importance sampling. We prove that under certain conditions the proposed distributed particle filtering algorithm converges in probability to a global posterior locally available at each sensor in the network. Numerical examples are presented to demonstrate the performance advantages of the proposed method in comparison with other distributed particle filtering algorithms.
引用
收藏
页码:280 / 292
页数:13
相关论文
共 50 条
  • [1] Distributed Particle Filtering Via Optimal Fusion of Gaussian Mixtures
    Li, Jichuan
    Nehorai, Arye
    [J]. 2015 18TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), 2015, : 1182 - 1189
  • [2] Distributed fault detection via particle filtering and decision fusion
    Cheng, Q
    Varshney, PK
    Michels, J
    Belcastro, CM
    [J]. 2005 7TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION), VOLS 1 AND 2, 2005, : 1239 - 1246
  • [3] A Nonlinear and Non-Gaussian Distributed Fusion Based on Rao-Blackwellized Particle Filtering
    Liu, Jingxian
    Wang, Zulin
    Xu, Mai
    [J]. 2016 8TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP), 2016,
  • [4] A Particle Fusion Approach for Distributed Filtering and Smoothing
    Lin, Tony X.
    Coogan, Samuel
    Sofge, Donald A.
    Zhang, Fumin
    [J]. UNMANNED SYSTEMS, 2024, 12 (02) : 277 - 291
  • [5] Distributed Resampling Gaussian Particle Filtering for Heterogeneous Networks
    Sun, Meiqiu
    Xia, Wei
    Wang, Qian
    [J]. 2019 22ND INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2019), 2019,
  • [6] DISTRIBUTED GAUSSIAN PARTICLE FILTERING USING LIKELIHOOD CONSENSUS
    Hlinka, Ondrej
    Sluciak, Ondrej
    Hlawatsch, Franz
    Djuric, Petar M.
    Rupp, Markus
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2011, : 3756 - 3759
  • [7] Adaptive Gaussian Mixture Learning in Distributed Particle Filtering
    Li, Jichuan
    Nehorai, Arye
    [J]. 2015 IEEE 6TH INTERNATIONAL WORKSHOP ON COMPUTATIONAL ADVANCES IN MULTI-SENSOR ADAPTIVE PROCESSING (CAMSAP), 2015, : 221 - 224
  • [8] Globally optimal distributed Kalman filtering fusion
    Shen XiaoJing
    Luo YingTing
    Zhu YunMin
    Song EnBin
    [J]. SCIENCE CHINA-INFORMATION SCIENCES, 2012, 55 (03) : 512 - 529
  • [9] Distributed optimal component fusion deconvolution filtering
    Sun, Shu-Li
    [J]. SIGNAL PROCESSING, 2007, 87 (01) : 202 - 209
  • [10] Globally optimal distributed Kalman filtering fusion
    XiaoJing Shen
    YingTing Luo
    YunMin Zhu
    EnBin Song
    [J]. Science China Information Sciences, 2012, 55 : 512 - 529