Local ensemble Kalman filtering in the presence of model bias

被引:80
|
作者
Baek, SJ [1 ]
Hunt, BR
Kalnay, E
Ott, E
Szunyogh, I
机构
[1] Univ Maryland, Inst Res Elect & Appl Phys, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Elect & Comp Engn, College Pk, MD 20742 USA
[3] Univ Maryland, Dept Math, College Pk, MD 20742 USA
[4] Univ Maryland, Inst Phys Sci & Technol, College Pk, MD 20742 USA
[5] Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA
[6] Univ Maryland, Dept Phys, College Pk, MD 20742 USA
关键词
D O I
10.1111/j.1600-0870.2006.00178.x
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
We modify the local ensemble Kalman filter (LEKF) to incorporate the effect of forecast model bias. The method is based on augmentation of the atmospheric state by estimates of the model bias, and we consider different ways of modeling (i.e. parameterizing) the model bias. We evaluate the effectiveness of the proposed augmented state ensemble Kalman filter through numerical experiments incorporating various model biases into the model of Lorenz and Emanuel. Our results highlight the critical role played by the selection of a good parameterization model for representing the form of the possible bias in the forecast model. In particular, we find that forecasts can be greatly improved provided that a good model parameterizing the model bias is used to augment the state in the Kalman filter.
引用
收藏
页码:293 / 306
页数:14
相关论文
共 50 条
  • [1] Ensemble Kalman Filtering without a Model
    Hamilton, Franz
    Berry, Tyrus
    Sauer, Timothy
    [J]. PHYSICAL REVIEW X, 2016, 6 (01):
  • [2] Ensemble Kalman filtering
    Houtekamer, P. L.
    Mitchell, Herschel L.
    [J]. QUARTERLY JOURNAL OF THE ROYAL METEOROLOGICAL SOCIETY, 2005, 131 (613) : 3269 - 3289
  • [3] Nonglobal Parameter Estimation Using Local Ensemble Kalman Filtering
    Bellsky, Thomas
    Berwald, Jesse
    Mitchell, Lewis
    [J]. MONTHLY WEATHER REVIEW, 2014, 142 (06) : 2150 - 2164
  • [4] Ensemble Kalman filtering for force model identification in milling
    Schwenzer, Max
    Stemmler, Sebastian
    Ay, Muzaffer
    Bergs, Thomas
    Abel, Dirk
    [J]. 17TH CIRP CONFERENCE ON MODELLING OF MACHINING OPERATIONS (17TH CIRP CMMO), 2019, 82 : 296 - 301
  • [5] Ensemble Consider Kalman Filtering
    Lou, Tai-shan
    Chen, Nan-hua
    Xiong, Hua
    Li, Ya-xi
    Wang, Lei
    [J]. 2018 IEEE CSAA GUIDANCE, NAVIGATION AND CONTROL CONFERENCE (CGNCC), 2018,
  • [6] Distributed Ensemble Kalman Filtering
    Shahid, Arslan
    Uestebay, Deniz
    Coates, Mark
    [J]. 2014 IEEE 8TH SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP (SAM), 2014, : 217 - 220
  • [7] MULTILEVEL ENSEMBLE KALMAN FILTERING
    Hoel, Hakon
    Law, Kody J. H.
    Tempone, Raul
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1813 - 1839
  • [8] Ensemble Kalman filtering with residual nudging
    Luo, Xiaodong
    Hoteit, Ibrahim
    [J]. TELLUS SERIES A-DYNAMIC METEOROLOGY AND OCEANOGRAPHY, 2012, 64 : 1 - 22
  • [9] Variance reduced ensemble Kalman filtering
    Heemink, AW
    Verlaan, M
    Segers, AJ
    [J]. MONTHLY WEATHER REVIEW, 2001, 129 (07) : 1718 - 1728
  • [10] Parameter Set Reduction and Ensemble Kalman Filtering for Engine Model Calibration
    Salehi, Rasoul
    Stefanopoulou, Anna
    [J]. JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2020, 142 (01):