Local Lighting Invariant Features for Face Recognition

被引:0
|
作者
An, GaoYun [1 ]
Ruan, QiuQi [1 ]
Wu, JiYing [1 ]
Jin, Yi [1 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In this paper, a novel Local Lighting Invariant (LLI) model is proposed and applied to face recognition to extract lighting invariant features. In the LLI model, the TV-L-1 model based on nonlinear partial-differential equations (PDE's) is adopted to build a lighting invariant face image space first. In the built lighting invariant image space, the basic idea of orthogonal Laplacianface method is adopted to learn the local manifold structure of face samples. Experimental results on three famous lighting face databases (Yale Face Database B, extended Yale Face Database B and CMU PIE Database) confirm that the learned local manifold structure of faces by LLI has more discriminating power than orthogonal Laplacianfaces for face recognition.
引用
收藏
页码:1605 / 1608
页数:4
相关论文
共 50 条
  • [1] Face Description with Local Invariant Features: Application to Face Recognition
    Pardeshi, Sanjay A.
    Talbar, S. N.
    [J]. 2009 SECOND INTERNATIONAL CONFERENCE ON EMERGING TRENDS IN ENGINEERING AND TECHNOLOGY (ICETET 2009), 2009, : 695 - +
  • [2] Face Sketch Recognition Using Local Invariant Features
    Tharwat, Alaa
    Mahdi, Hani
    El Hennawy, Adel
    Hassanien, Aboul Ella
    [J]. PROCEEDINGS OF THE 2015 SEVENTH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR 2015), 2015, : 117 - 122
  • [3] ICA filters for lighting invariant face recognition
    Fortuna, J
    Capson, D
    [J]. PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 1, 2004, : 334 - 337
  • [4] PSI (ψ) Invariant Features for Face Recognition
    Cholin, Ajaykumar S.
    Vinay, A.
    Bhat, Aditya D.
    Deshpande, Arnav Ajay
    Murthy, K. N. B.
    Natarajan, S.
    [J]. MATHEMATICAL MODELLING AND SCIENTIFIC COMPUTING WITH APPLICATIONS, ICMMSC 2018, 2020, 308 : 359 - 376
  • [5] Local directional pattern of phase congruency features for illumination invariant face recognition
    Essa, Almabrok E.
    Asari, Vijayan K.
    [J]. OPTICAL PATTERN RECOGNITION XXV, 2014, 9094
  • [6] FACE RECOGNITION USING PERSPECTIVE INVARIANT FEATURES
    KAMEL, MS
    SHEN, HC
    WONG, AKC
    HONG, TM
    CAMPEANU, RI
    [J]. PATTERN RECOGNITION LETTERS, 1994, 15 (09) : 877 - 883
  • [7] Facial Sketch-to-Photo Matching and Face Recognition using Local Invariant Features
    Tharwat, Alaa
    Mahdi, Hani
    El Hennawy, Adel
    [J]. JOURNAL OF INFORMATION ASSURANCE AND SECURITY, 2016, 11 (01): : 21 - 30
  • [8] Adaptive Weighted Local Textural Features for Illumination, Expression and Occlusion Invariant Face Recognition
    Cui, Chen
    Asari, Vijayan K.
    [J]. IMAGING AND MULTIMEDIA ANALYTICS IN A WEB AND MOBILE WORLD 2014, 2014, 9027
  • [9] Face recognition using holistic Fourier invariant features
    Lai, JH
    Yuen, PC
    Feng, GC
    [J]. PATTERN RECOGNITION, 2001, 34 (01) : 95 - 109
  • [10] Automatic Face Recognition with Aging Using the Invariant Features
    Ouloul, Imad Mohamed
    Afdel, Karim
    Amghar, Abdellah
    Moutakki, Zakaria
    [J]. 2015 5TH INTERNATIONAL CONFERENCE ON INFORMATION & COMMUNICATION TECHNOLOGY AND ACCESSIBILITY (ICTA), 2015,