Ab initio determination of the instability growth rate of warm dense beryllium-deuterium interface

被引:5
|
作者
Wang, Cong [1 ,2 ]
Li, Zi [1 ]
Li, DaFang [1 ]
Zhang, Ping [1 ,2 ]
机构
[1] Inst Appl Phys & Computat Math, Beijing 100088, Peoples R China
[2] Peking Univ, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
关键词
RAYLEIGH-TAYLOR; DYNAMICS; DIFFUSION; VISCOSITY; TRANSPORT; PLASMA;
D O I
10.1063/1.4931994
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Accurate knowledge about the interfacial unstable growth is of great importance in inertial confinement fusion. During implosions, the deuterium-tritium capsule is driven by laser beams or X-rays to access the strongly coupled and partially degenerated warm dense matter regime. At this stage, the effects of dissipative processes, such as diffusion and viscosity, have significant impact on the instability growth rates. Here, we present ab initio molecular dynamics simulations to determine the equations of state and the transport coefficients. Several models are used to estimate the reduction in the growth rate dispersion curves of Rayleigh-Taylor and Richtmyer-Meshkov instabilities with considering the presence of these dissipative effects. We show that these instability growth rates are effectively reduced when considering diffusion. The findings provide significant insights into the microscopic mechanism of the instability growth at the ablator-fuel interface and will refine the models used in the laser-driven hydrodynamic instability experiments. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Ab initio simulation of warm dense matter
    Bonitz, M.
    Dornheim, T.
    Moldabekov, Zh A.
    Zhang, S.
    Hamann, P.
    Kahlert, H.
    Filinov, A.
    Ramakrishna, K.
    Vorberger, J.
    PHYSICS OF PLASMAS, 2020, 27 (04)
  • [2] Ab initio study of the structures and transport properties of warm dense nitrogen
    Fu Zhijian
    Chen Qifeng
    Li Zhiguo
    Tang Jun
    Zhang Wei
    Quan Weilong
    Li Jiangtao
    Zheng Jun
    Gu Yunjun
    HIGH ENERGY DENSITY PHYSICS, 2019, 31 : 52 - 58
  • [3] Ab initio study of structure and electrical conductivity of warm dense oxygen
    Fu, Zhijian
    Jia, Lijun
    Long, Xiaoxia
    Xia, Jihong
    Xiao, Xuyang
    Li, Yang
    Zhang, Wei
    Li, Zhiguo
    PHYSICS OF PLASMAS, 2020, 27 (05)
  • [4] Ab initio results for the static structure factor of the warm dense electron gas
    Dornheim, Tobias
    Groth, Simon
    Bonitz, Michael
    CONTRIBUTIONS TO PLASMA PHYSICS, 2017, 57 (10) : 468 - 478
  • [5] Ab initio quantum Monte Carlo simulation of the warm dense electron gas
    Dornheim, Tobias
    Groth, Simon
    Malone, Fionn D.
    Schoof, Tim
    Sjostrom, Travis
    Foulkes, W. M. C.
    Bonitz, Michael
    PHYSICS OF PLASMAS, 2017, 24 (05)
  • [6] Ab initio simulations of the dynamic ion structure factor of warm dense lithium
    Witte, B. B. L.
    Shihab, M.
    Glenzer, S. H.
    Redmer, R.
    PHYSICAL REVIEW B, 2017, 95 (14)
  • [7] Ab Initio Study of Structure and Transport Properties of Warm Dense Nitric Oxide
    Fu, Zhijian
    Zhang, Xianming
    Wang, Rui
    Sun, Huayang
    Lan, Yangshun
    Xia, Jihong
    Li, Zhiguo
    Song, Jing
    INORGANICS, 2022, 10 (08)
  • [8] Ab initio density response and local field factor of warm dense hydrogen
    Dornheim, Tobias
    Schwalbe, Sebastian
    Tolias, Panagiotis
    Boehme, Maximilian P.
    Moldabekov, Zhandos A.
    Vorberger, Jan
    MATTER AND RADIATION AT EXTREMES, 2024, 9 (05)
  • [9] Ab initio density response and local field factor of warm dense hydrogen
    Tobias Dornheim
    Sebastian Schwalbe
    Panagiotis Tolias
    Maximilian PBhme
    Zhandos AMoldabekov
    Jan Vorberger
    Matter and Radiation at Extremes, 2024, 9 (05) : 54 - 73
  • [10] Ab initio results for the plasmon dispersion and damping of the warm dense electron gas
    Hamann, Paul
    Vorberger, Jan
    Dornheim, Tobias
    Moldabekov, Zhandos A.
    Bonitz, Michael
    CONTRIBUTIONS TO PLASMA PHYSICS, 2020, 60 (10)