Loss-of-function mutations in SLC30A8 protect against type 2 diabetes

被引:354
|
作者
Flannick, Jason [1 ,2 ,3 ]
Thorleifsson, Gudmar [4 ]
Beer, Nicola L. [1 ,5 ]
Jacobs, Suzanne B. R. [1 ]
Grarup, Niels [6 ]
Burtt, Noel P. [1 ]
Mahajan, Anubha [7 ]
Fuchsberger, Christian [8 ]
Atzmon, Gil [9 ,10 ]
Benediktsson, Rafn [11 ]
Blangero, John [12 ]
Bowden, Don W. [13 ,14 ,15 ,16 ]
Brandslund, Ivan [17 ,18 ]
Brosnan, Julia [19 ]
Burslem, Frank [20 ]
Chambers, John [21 ,22 ,23 ]
Cho, Yoon Shin [24 ]
Christensen, Cramer [25 ]
Douglas, Desiree A. [26 ]
Duggirala, Ravindranath [12 ]
Dymek, Zachary [1 ]
Farjoun, Yossi [1 ]
Fennell, Timothy [1 ]
Fontanillas, Pierre [1 ]
Forsen, Tom [27 ,28 ]
Gabriel, Stacey [1 ]
Glaser, Benjamin [29 ,30 ]
Gudbjartsson, Daniel F. [4 ]
Hanis, Craig [31 ]
Hansen, Torben [6 ,32 ]
Hreidarsson, Astradur B. [11 ]
Hveem, Kristian [33 ]
Ingelsson, Erik [7 ,34 ]
Isomaa, Bo [35 ,36 ]
Johansson, Stefan [37 ,38 ,39 ]
Jorgensen, Torben [40 ,41 ,42 ]
Jorgensen, Marit Eika [43 ]
Kathiresan, Sekar [1 ,44 ,45 ,46 ]
Kong, Augustine [4 ]
Kooner, Jaspal [22 ,23 ,47 ]
Kravic, Jasmina [48 ]
Laakso, Markku [49 ,50 ]
Lee, Jong-Young [51 ]
Lind, Lars [52 ]
Lindgren, Cecilia M. [1 ,7 ]
Linneberg, Allan [40 ,41 ,42 ,53 ]
Masson, Gisli [4 ]
Meitinger, Thomas [54 ]
Mohlke, Karen L. [55 ]
Molven, Anders [37 ,56 ,57 ]
机构
[1] Broad Inst Harvard & MIT, Program Med & Populat Genet, Cambridge, MA 02141 USA
[2] Massachusetts Gen Hosp, Dept Mol Biol, Boston, MA 02114 USA
[3] Massachusetts Gen Hosp, Diabet Unit, Boston, MA 02114 USA
[4] Amgen Inc, deCODE Genet, Reykjavik, Iceland
[5] Univ Oxford, Oxford Ctr Diabet Endocrinol & Metab, Oxford, England
[6] Univ Copenhagen, Fac Hlth & Med Sci, Novo Nordisk Fdn,Ctr Basic Metab Res, Copenhagen, Denmark
[7] Univ Oxford, Wellcome Trust Ctr Human Genet, Oxford, England
[8] Univ Michigan, Dept Biostat, Ctr Stat Genet, Ann Arbor, MI 48109 USA
[9] Albert Einstein Coll Med, Dept Med, Bronx, NY 10467 USA
[10] Albert Einstein Coll Med, Dept Genet, Bronx, NY 10467 USA
[11] Landspitali Univ Hosp, Dept Endocrinol & Metab, Reykjavik, Iceland
[12] Texas Biomed Res Inst, Dept Genet, San Antonio, TX USA
[13] Wake Forest Univ, Bowman Gray Sch Med, Ctr Genom & Personalized Med Res, Winston Salem, NC USA
[14] Wake Forest Univ, Bowman Gray Sch Med, Ctr Diabet Res, Winston Salem, NC USA
[15] Wake Forest Univ, Bowman Gray Sch Med, Dept Biochem, Winston Salem, NC USA
[16] Wake Forest Univ, Bowman Gray Sch Med, Dept Internal Med, Winston Salem, NC USA
[17] Vejle Hosp, Dept Clin Biochem, Vejle, Denmark
[18] Univ Southern Denmark, Inst Reg Hlth Res, Odense, Denmark
[19] Pfizer Inc, Cardiovasc & Metab Dis Res Unit, Cambridge, MA USA
[20] Prescient Life Sci, Cardiovasc & Metab Dis Practice, London, England
[21] Univ London Imperial Coll Sci Technol & Med, Dept Epidemiol & Biostat, London, England
[22] Univ London Imperial Coll Sci Technol & Med, Healthcare Natl Hlth Serv NHS Trust, London, England
[23] Ealing Hosp NHS Trust, Southall, Middx, England
[24] Hallym Univ, Dept Biomed Sci, Chunchon, South Korea
[25] Vejle Hosp, Dept Internal Med & Endocrinol, Vejle, Denmark
[26] Lund Univ, Dept Clin Sci, Unit Diabet & Celiac Dis, Malmo, Sweden
[27] Univ Helsinki, Dept Gen Practice & Primary Hlth Care, Helsinki, Finland
[28] Vaasa Hlth Care Ctr, Diabetes Care Unit, Vaasa, Finland
[29] Hadassah Hebrew Univ, Med Ctr, Endocrinol & Metab Serv, Jerusalem, Israel
[30] IDRG, Holon, Israel
[31] Univ Texas Hlth Sci Ctr Houston, Human Genet Ctr, Houston, TX 77030 USA
[32] Univ Southern Denmark, Fac Hlth Sci, Odense, Denmark
[33] Norwegian Univ Sci & Technol, Fac Med, Dept Publ Hlth, Levanger, Norway
[34] Uppsala Univ, Dept Med Sci, Mol Epidemiol & Sci Life Lab, Uppsala, Sweden
[35] Folkhalsan Res Ctr, Helsinki, Finland
[36] Dept Social Serv & Hlth Care, Pietarsaari, Finland
[37] Univ Bergen, KG Jebsen Ctr Diabet Res, Dept Clin Sci, Bergen, Norway
[38] Haukeland Hosp, Ctr Med Genet & Mol Med, N-5021 Bergen, Norway
[39] Univ Bergen, Dept Biomed, Bergen, Norway
[40] Glostrup Univ Hosp, Res Ctr Prevent & Hlth, Glostrup, Denmark
[41] Univ Copenhagen, Fac Hlth & Med, Copenhagen, Denmark
[42] Aalborg Univ, Fac Med, Aalborg, Denmark
[43] Steno Diabet Ctr, DK-2820 Gentofte, Denmark
[44] Massachusetts Gen Hosp, Ctr Human Genet Res, Boston, MA 02114 USA
[45] Massachusetts Gen Hosp, Cardiovasc Res Ctr, Div Cardiol, Boston, MA 02114 USA
[46] Harvard Univ, Sch Med, Dept Med, Boston, MA USA
[47] Univ London Imperial Coll Sci Technol & Med, Hammersmith Hosp, NHLI, London, England
[48] Lund Univ, Ctr Diabet, Dept Clin Sci Diabet & Endocrinol, Malmo, Sweden
[49] Univ Eastern Finland, Dept Med, Kuopio, Finland
[50] Kuopio Univ Hosp, SF-70210 Kuopio, Finland
基金
瑞典研究理事会; 美国国家卫生研究院; 芬兰科学院; 欧洲研究理事会; 英国惠康基金;
关键词
ZINC TRANSPORTER ZNT8; GENOME-WIDE ASSOCIATION; GLUCOSE-HOMEOSTASIS; COMMON VARIANTS; BETA-CELL; INSULIN; RARE; PATHOPHYSIOLOGY; EXPRESSION; RESPONSES;
D O I
10.1038/ng.2915
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Loss-of-function mutations protective against human disease provide in vivo validation of therapeutic targets1-3, but none have yet been described for type 2 diabetes (T2D). Through sequencing or genotyping of -150,000 individuals across 5 ancestry groups, we identified 12 rare protein-truncating variants in SLC30A8, which encodes an islet zinc transporter (ZnT8) 4 and harbors a common variant (p. Trp325Arg) associated with T2D risk and glucose and proinsulin levels5-7. Collectively, carriers of protein-truncating variants had 65% reduced T2D risk (P = 1.7 x 10(-6)), and non-diabetic Icelandic carriers of a frameshift variant (p. Lys34Serfs* 50) demonstrated reduced glucose levels (-0.17 s. d., P = 4.6 x 10(-4)). The two most common proteintruncating variants (p. Arg138* and p. Lys34Serfs* 50) individually associate with T2D protection and encode unstable ZnT8 proteins. Previous functional study of SLC30A8 suggested that reduced zinc transport increases T2D risk(8,9), and phenotypic heterogeneity was observed in mouse Slc30a8 knockouts(10-15). In contrast, loss-of-function mutations in humans provide strong evidence that SLC30A8 haploinsufficiency protects against T2D, suggesting ZnT8 inhibition as a therapeutic strategy in T2D prevention.
引用
收藏
页码:357 / +
页数:8
相关论文
共 50 条
  • [1] Loss-of-function mutations in SLC30A8 protect against type 2 diabetes
    Jason Flannick
    Gudmar Thorleifsson
    Nicola L Beer
    Suzanne B R Jacobs
    Niels Grarup
    Noël P Burtt
    Anubha Mahajan
    Christian Fuchsberger
    Gil Atzmon
    Rafn Benediktsson
    John Blangero
    Don W Bowden
    Ivan Brandslund
    Julia Brosnan
    Frank Burslem
    John Chambers
    Yoon Shin Cho
    Cramer Christensen
    Desirée A Douglas
    Ravindranath Duggirala
    Zachary Dymek
    Yossi Farjoun
    Timothy Fennell
    Pierre Fontanillas
    Tom Forsén
    Stacey Gabriel
    Benjamin Glaser
    Daniel F Gudbjartsson
    Craig Hanis
    Torben Hansen
    Astradur B Hreidarsson
    Kristian Hveem
    Erik Ingelsson
    Bo Isomaa
    Stefan Johansson
    Torben Jørgensen
    Marit Eika Jørgensen
    Sekar Kathiresan
    Augustine Kong
    Jaspal Kooner
    Jasmina Kravic
    Markku Laakso
    Jong-Young Lee
    Lars Lind
    Cecilia M Lindgren
    Allan Linneberg
    Gisli Masson
    Thomas Meitinger
    Karen L Mohlke
    Anders Molven
    Nature Genetics, 2014, 46 : 357 - 363
  • [2] SLC30A8 mutations in type 2 diabetes
    Rutter, Guy A.
    Chimienti, Fabrice
    DIABETOLOGIA, 2015, 58 (01) : 31 - 36
  • [3] SLC30A8 mutations in type 2 diabetes
    Guy A. Rutter
    Fabrice Chimienti
    Diabetologia, 2015, 58 : 31 - 36
  • [4] Type 2 Diabetes Variants in the SLC16A11 Coding Region Are Not Loss-of-Function Mutations
    Zhao, Yongxu
    Feng, Zhuanghui
    Ding, Qiurong
    CELL REPORTS, 2019, 29 (03): : 781 - 784
  • [5] SLC30A8 (ZnT8) variations and type 2 diabetes in the Chinese Han population
    Xu, J.
    Wang, J.
    Chen, B.
    GENETICS AND MOLECULAR RESEARCH, 2012, 11 (02) : 1592 - 1598
  • [6] Zinc transporter-8 gene (SLC30A8) is associated with type 2 diabetes in Chinese
    Xiang, Jie
    Li, Xiao-Ying
    Xu, Min
    Hong, Jie
    Huang, Yun
    Tan, Jiao-Rong
    Lu, Xi
    Dai, Meng
    Yu, Bing
    Ning, Guang
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2008, 93 (10): : 4107 - 4112
  • [7] Impact of type 2 diabetes-associated variants at the SLC30A8 locus on transcriptional activity and function of human b cells and super-enhancer at SLC30A8 gene locus
    Hu, M.
    Kim, I.
    Canouil, M.
    Bonas-Guarch, S.
    Khamis, A. A.
    Ferrer, J.
    Froguel, P.
    Rutter, G. R.
    DIABETOLOGIA, 2022, 65 (SUPPL 1) : S141 - S141
  • [8] SLC30A8 polymorphism and type 2 diabetes risk: Evidence from 27 study groups
    Jing, Y. L.
    Sun, Q. M.
    Bi, Y.
    Shen, S. M.
    Zhu, D. L.
    NUTRITION METABOLISM AND CARDIOVASCULAR DISEASES, 2011, 21 (06) : 398 - 405
  • [9] The Influence of Rare Genetic Variation in SLC30A8 on Diabetes Incidence and β-Cell Function
    Billings, Liana K.
    Jablonski, Kathleen A.
    Ackerman, Rachel J.
    Taylor, Andrew
    Fanelli, Rebecca R.
    McAteer, Jarred B.
    Guiducci, Candace
    Delahanty, Linda M.
    Dabelea, Dana
    Kahn, Steven E.
    Franks, Paul W.
    Hanson, Robert L.
    Maruthur, Nisa M.
    Shuldiner, Alan R.
    Mayer-Davis, Elizabeth J.
    Knowler, William C.
    Florez, Jose C.
    JOURNAL OF CLINICAL ENDOCRINOLOGY & METABOLISM, 2014, 99 (05): : E926 - E930
  • [10] Protein truncating variants of SLC30A8 reduce type 2 diabetes mellitus risk in humans
    Yakala, G. K.
    CLINICAL GENETICS, 2014, 86 (02) : 121 - 122