Primitive values of rational functions at primitive elements of a finite field

被引:12
|
作者
Cohen, Stephen D. [1 ]
Sharma, Hariom [2 ]
Sharma, Rajendra [2 ]
机构
[1] 6 Bracken Rd, Aberdeen AB12 4TA, Scotland
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
Finite fields; Characters; Primitive element; SUMS; PAIR;
D O I
10.1016/j.jnt.2020.09.017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given a prime power q and an integer n >= 2, we establish a sufficient condition for the existence of a primitive pair (alpha, f(alpha)) where alpha is an element of F-q and f (x) is an element of F-q(x) is a rational function of degree sum n. (Here f = f(1)/f(2), where f(1), f(2) are coprime polynomials of degree n(1), n(2), respectively, and the sum of their degrees n(1) + n(2) = n.) For any n, such a pair is guaranteed to exist for sufficiently large q. Indeed, when n = 2, such a pair definitely does not exist only for 28 values of q and possibly (but unlikely) only for at most 3911 other values of q. (c) 2020 Elsevier Inc. All rights reserved.
引用
收藏
页码:237 / 246
页数:10
相关论文
共 50 条
  • [1] Primitive normal values of rational functions over finite fields
    Sharma, Avnish K.
    Rani, Mamta
    Tiwari, Sharwan K.
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (07)
  • [2] Fields with primitive elements having primitive image under rational functions
    Laishram, Shanta
    Sarma, Ritumoni
    Sharma, Jyotsna
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (04) : 1397 - 1407
  • [3] On consecutive primitive elements in a finite field
    Cohen, Stephen D.
    Oliveira e Silva, Tomas
    Trudgian, Tim
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2015, 47 : 418 - 426
  • [4] PRIMITIVE PROGRAM ALGEBRAS OF FUNCTIONS OF RATIONAL ARGUMENTS AND VALUES
    BUI, DB
    REDKO, VN
    DOPOVIDI AKADEMII NAUK UKRAINSKOI RSR SERIYA A-FIZIKO-MATEMATICHNI TA TECHNICHNI NAUKI, 1985, (06): : 63 - 65
  • [5] PRIMITIVE VALUES OF QUADRATIC POLYNOMIALS IN A FINITE FIELD
    Booker, Andrew R.
    Cohen, Stephen D.
    Sutherland, Nicole
    Trudgian, Tim
    MATHEMATICS OF COMPUTATION, 2019, 88 (318) : 1903 - 1912
  • [6] Linear combinations of primitive elements of a finite field
    Cohen, Stephen D.
    Oliveira e Silva, Tomas
    Sutherland, Nicole
    Trudgian, Tim
    FINITE FIELDS AND THEIR APPLICATIONS, 2018, 51 : 388 - 406
  • [7] FOUR CONSECUTIVE PRIMITIVE ELEMENTS IN A FINITE FIELD
    Jarso, Tamiru
    Trudgian, T. I. M.
    MATHEMATICS OF COMPUTATION, 2022, 91 (335) : 1521 - 1532
  • [8] On special pairs of primitive elements over a finite field
    Carvalho, Cicero
    Guardieiro, Joao Paulo
    Neumann, Victor G. L.
    Tizziotti, Guilherme
    FINITE FIELDS AND THEIR APPLICATIONS, 2021, 73
  • [9] On primitive elements in finite semifields
    Gow, Rod
    Sheekey, John
    FINITE FIELDS AND THEIR APPLICATIONS, 2011, 17 (02) : 194 - 204
  • [10] On the sum of two primitive elements of maximal subfields of a finite field
    Petrenko, BV
    FINITE FIELDS AND THEIR APPLICATIONS, 2003, 9 (01) : 102 - 116