Deep Sliding Shapes for Amodal 3D Object Detection in RGB-D Images

被引:412
|
作者
Song, Shuran [1 ]
Xiao, Jianxiong [1 ]
机构
[1] Princeton Univ, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
D O I
10.1109/CVPR.2016.94
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We focus on the task of amodal 3D object detection in RGB-D images, which aims to produce a 3D bounding box of an object in metric form at its full extent. We introduce Deep Sliding Shapes, a 3D ConvNet formulation that takes a 3D volumetric scene from a RGB-D image as input and outputs 3D object bounding boxes. In our approach, we propose the first 3D Region Proposal Network (RPN) to learn objectness from geometric shapes and the first joint Object Recognition Network (ORN) to extract geometric features in 3D and color features in 2D. In particular, we handle objects of various sizes by training an amodal RPN at two different scales and an ORN to regress 3D bounding boxes. Experiments show that our algorithm outperforms the state-of-the-art by 13.8 in mAP and is 200x faster than the original Sliding Shapes.
引用
收藏
页码:808 / 816
页数:9
相关论文
共 50 条
  • [1] 3D-SSD: Learning hierarchical features from RGB-D images for amodal 3D object detection
    Luo, Qianhui
    Ma, Huifang
    Tang, Li
    Wang, Yue
    Xiong, Rong
    NEUROCOMPUTING, 2020, 378 : 364 - 374
  • [2] 2D-Driven 3D Object Detection in RGB-D Images
    Lahoud, Jean
    Ghanem, Bernard
    2017 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2017, : 4632 - 4640
  • [3] Expandable YOLO: 3D Object Detection from RGB-D Images
    Takahashi, Masahiro
    Ji, Yonghoon
    Umeda, Kazunori
    Moro, Alessandro
    2020 21ST INTERNATIONAL CONFERENCE ON RESEARCH AND EDUCATION IN MECHATRONICS (REM), 2020,
  • [4] Sliding Shapes for 3D Object Detection in Depth Images
    Song, Shuran
    Xiao, Jianxiong
    COMPUTER VISION - ECCV 2014, PT VI, 2014, 8694 : 634 - 651
  • [5] A 3D Object Detection and Pose Estimation Pipeline Using RGB-D Images
    He, Ruotao
    Rojas, Juan
    Guan, Yisheng
    2017 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND BIOMIMETICS (IEEE ROBIO 2017), 2017, : 1527 - 1532
  • [6] Improved Sliding Shapes for Instance Segmentation of Amodal 3D Object
    Lin, Jinhua
    Yao, Yu
    Wang, Yanjie
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2018, 12 (11): : 5555 - 5567
  • [7] SL3D-Single Look 3D Object Detection based on RGB-D Images
    Erabati, Gopi Krishna
    Araujo, Helder
    2020 DIGITAL IMAGE COMPUTING: TECHNIQUES AND APPLICATIONS (DICTA), 2020,
  • [8] Fast 3D Object Detection with RGB-D Images Using Graph Convolutional Network
    Takahashi, Masahiro
    Kitsukawa, Takumi
    Moro, Alessandro
    Umeda, Kazunori
    2022 IEEE/SICE INTERNATIONAL SYMPOSIUM ON SYSTEM INTEGRATION (SII 2022), 2022, : 395 - 400
  • [9] Particle swarm optimization for 3D object tracking in RGB-D images
    dos Santos Junior, Jose Guedes
    Silva do Monte Lima, Joan Paulo
    COMPUTERS & GRAPHICS-UK, 2018, 76 : 167 - 180
  • [10] 3D Hand Pose Detection in Egocentric RGB-D Images
    Rogez, Gregory
    Khademi, Maryam
    Supancic, J. S., III
    Montiel, J. M. M.
    Ramanan, Deva
    COMPUTER VISION - ECCV 2014 WORKSHOPS, PT I, 2015, 8925 : 356 - 371