Attention-Based Personalized Encoder-Decoder Model for Local Citation Recommendation

被引:17
|
作者
Yang, Libin [1 ]
Zhang, Zeqing [2 ]
Cai, Xiaoyan [1 ]
Dai, Tao [3 ]
机构
[1] Northwestern Polytech Univ, Sch Automat, Xian, Shaanxi, Peoples R China
[2] Xidian Univ, Sch Telecommun Engn, Xian, Shaanxi, Peoples R China
[3] Xi An Jiao Tong Univ, Sch Software Engn, Xian, Shaanxi, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
D O I
10.1155/2019/1232581
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
With a tremendous growth in the number of scientific papers, researchers have to spend too much time and struggle to find the appropriate papers they are looking for. Local citation recommendation that provides a list of references based on a text segment could alleviate the problem. Most existing local citation recommendation approaches concentrate on how to narrow the semantic difference between the scientific papers' and citation context's text content, completely neglecting other information. Inspired by the successful use of the encoder-decoder framework in machine translation, we develop an attention-based encoder-decoder (AED) model for local citation recommendation. The proposed AED model integrates venue information and author information in attention mechanism and learns relations between variable-length texts of the two text objects, i.e., citation contexts and scientific papers. Specifically, we first construct an encoder to represent a citation context as a vector in a low-dimensional space; after that, we construct an attention mechanism integrating venue information and author information and use RNN to construct a decoder, then we map the decoder's output into a softmax layer, and score the scientific papers. Finally, we select papers which have high scores and generate a recommended reference paper list. We conduct experiments on the DBLP and ACL Anthology Network (AAN) datasets, and the results illustrate that the performance of the proposed approach is better than the other three state-of-the-art approaches.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Arabic Machine Transliteration using an Attention-based Encoder-decoder Model
    Ameur, Mohamed Seghir Hadj
    Meziane, Farid
    Guessoum, Ahmed
    [J]. ARABIC COMPUTATIONAL LINGUISTICS (ACLING 2017), 2017, 117 : 287 - 297
  • [2] Attention-Based Encoder-Decoder Model for Photovoltaic Power Generation Prediction
    Zhu, Xiang
    Hu, Juntao
    Song, Liangcai
    Suo, Guilong
    Zhan, Yong
    [J]. 5TH ANNUAL INTERNATIONAL CONFERENCE ON INFORMATION SYSTEM AND ARTIFICIAL INTELLIGENCE (ISAI2020), 2020, 1575
  • [3] Attention-based encoder-decoder networks for workflow recognition
    Min Zhang
    Haiyang Hu
    Zhongjin Li
    Jie Chen
    [J]. Multimedia Tools and Applications, 2021, 80 : 34973 - 34995
  • [4] Attention-based encoder-decoder model for answer selection in question answering
    Nie, Yuan-ping
    Han, Yi
    Huang, Jiu-ming
    Jiao, Bo
    Li, Ai-ping
    [J]. FRONTIERS OF INFORMATION TECHNOLOGY & ELECTRONIC ENGINEERING, 2017, 18 (04) : 535 - 544
  • [5] Attention-based encoder-decoder model for answer selection in question answering
    Yuan-ping Nie
    Yi Han
    Jiu-ming Huang
    Bo Jiao
    Ai-ping Li
    [J]. Frontiers of Information Technology & Electronic Engineering, 2017, 18 : 535 - 544
  • [6] Attention-based encoder-decoder networks for workflow recognition
    Zhang, Min
    Hu, Haiyang
    Li, Zhongjin
    Chen, Jie
    [J]. MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (28-29) : 34973 - 34995
  • [7] Video Summarization With Attention-Based Encoder-Decoder Networks
    Ji, Zhong
    Xiong, Kailin
    Pang, Yanwei
    Li, Xuelong
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2020, 30 (06) : 1709 - 1717
  • [8] Mining Implicit Intention Using Attention-Based RNN Encoder-Decoder Model
    Li, ChenXing
    Du, YaJun
    Wang, SiDa
    [J]. INTELLIGENT COMPUTING METHODOLOGIES, ICIC 2017, PT III, 2017, 10363 : 413 - 424
  • [9] Pooling Attention-based Encoder-Decoder Network for semantic segmentation
    Xu, Haixia
    Huang, Yunjia
    Hancock, Edwin R.
    Wang, Shuailong
    Xuan, Qijun
    Zhou, Wei
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2021, 93
  • [10] ATTENTION-BASED ENCODER-DECODER NETWORK FOR SINGLE IMAGE DEHAZING
    Gao, Shunan
    Zhu, Jinghua
    Xi, Heran
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA & EXPO WORKSHOPS (ICMEW), 2021,