Tensor Kernel Recovery for Discrete Spatio-Temporal Hawkes Processes

被引:0
|
作者
Sheen, Heejune [1 ]
Zhu, Xiaonan [2 ]
Xie, Yao [3 ]
机构
[1] Yale Univ, Dept Stat & Data Sci, New Haven, CT 06511 USA
[2] Princeton Univ, Dept Operat Res & Financial Engn, Princeton, NJ 08544 USA
[3] Georgia Inst Technol, H Milton Stewart Sch Ind & Syst Engn, Atlanta, GA 30332 USA
关键词
Hawkes process; spatio-temporal data; low-rank tensor; transformed tensor nuclear norm; convex optimization; MODELS;
D O I
10.1109/TSP.2022.3229642
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We introduce a new discrete spatio-temporal Hawkes process model by formulating the general influence of the Hawkes process as a tensor kernel. Based on the low-rank structure assumption of the tensor kernel, we cast the estimation of the tensor kernel as a convex optimization problem using the Fourier transformed nuclear norm. We provide theoretical performance guarantees for our approach and present an algorithm to solve the optimization problem. In particular, our upper bound of squared estimation error has the convergence rate of $O(lnK/\sqrt{K})$, where $K$ is the number of samples in the time horizon. The efficiency of our estimation is demonstrated with numerical simulations on synthetic data and the analysis of real-world data from Atlanta burglary incidents.
引用
收藏
页码:5859 / 5870
页数:12
相关论文
共 50 条
  • [1] Spatio-Temporal Hawkes Point Processes: A Review
    Bernabeu, Alba
    Zhuang, Jiancang
    Mateu, Jorge
    [J]. JOURNAL OF AGRICULTURAL BIOLOGICAL AND ENVIRONMENTAL STATISTICS, 2024,
  • [2] Modeling of Spatio-Temporal Hawkes Processes With Randomized Kernels
    Ilhan, Fatih
    Kozat, Suleyman S.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 (68) : 4946 - 4958
  • [3] Robust Spatio-Temporal Tensor Recovery for Internet Traffic Data
    Zhou, Huibin
    Zhang, Dafang
    Xie, Kun
    Chen, Yuxiang
    [J]. 2016 IEEE TRUSTCOM/BIGDATASE/ISPA, 2016, : 1404 - 1411
  • [4] Approximation of Spatio-Temporal Random Processes Using Tensor Decomposition
    Ghosh, Debraj
    Suryawanshi, Anup
    [J]. COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 16 (01) : 75 - 95
  • [5] Spatio-temporal processes
    Harvill, Jane L.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (03) : 375 - 382
  • [6] Context-aware spatio-temporal event prediction via convolutional Hawkes processes
    Maya Okawa
    Tomoharu Iwata
    Yusuke Tanaka
    Takeshi Kurashima
    Hiroyuki Toda
    Hisashi Kashima
    [J]. Machine Learning, 2022, 111 : 2929 - 2950
  • [7] Context-aware spatio-temporal event prediction via convolutional Hawkes processes
    Okawa, Maya
    Iwata, Tomoharu
    Tanaka, Yusuke
    Kurashima, Takeshi
    Toda, Hiroyuki
    Kashima, Hisashi
    [J]. MACHINE LEARNING, 2022, 111 (08) : 2929 - 2950
  • [8] Flexible spatio-temporal Hawkes process models for earthquake occurrences
    Kwon, Junhyeon
    Zheng, Yingcai
    Jun, Mikyoung
    [J]. SPATIAL STATISTICS, 2023, 54
  • [9] Spatio-Temporal Context Kernel for Activity Recognition
    Yuan, Fei
    Sahbi, Hichem
    Prinet, Veronique
    [J]. 2011 FIRST ASIAN CONFERENCE ON PATTERN RECOGNITION (ACPR), 2011, : 436 - 440
  • [10] SPATIO-TEMPORAL TUBE KERNEL FOR ACTOR RETRIEVAL
    Zhao, Shuji
    Precioso, Frederic
    Cord, Matthieu
    [J]. 2009 16TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-6, 2009, : 1885 - +