Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode

被引:26
|
作者
Cheng Zhenjie [1 ,2 ]
Mao Yayun [2 ,3 ]
Dong Qingyu [1 ,2 ]
Jin Feng [1 ,2 ]
Shen Yanbin [2 ]
Chen Liwei [2 ]
机构
[1] Univ Sci & Technol China, Sch Nano Technol & Nano Bion, Hefei 230026, Anhui, Peoples R China
[2] Chinese Acad Sci, Suzhou Inst Nanotech & Nanobion, Ctr Excellence Nanosci, i Lab, Suzhou 215123, Jiangsu, Peoples R China
[3] Shanghai Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Electrolyte additive; Fluoroethylene carbonate; Sodium ion battery; Cathode materials; In situ XRD; SOLID-ELECTROLYTE INTERPHASE; SEI FORMATION; LI; ANODE; LITHIUM; PERFORMANCE; FILM; IDENTIFICATION; CHALLENGES; STABILITY;
D O I
10.3866/PKU.WHXB201811033
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Driven by the wide-scale implementation of intermittent renewable energy generating technologies, such as wind and solar, sodiumion batteries have recently attracted attention as an inexpensive energy storage system due to the abundance, low cost, and relatively low redox potential of sodium. However, in comparison with lithium-ion batteries, which are known for long cycle life, sodium-ion batteries usually suffer from significant capacity fading during long-term cycling due to the large volume expansion/contraction of the electrode active materials caused by insertion/extraction of the large sodium ion. In recent years, intense effort has been focused on the search for high performance electrode materials and electrolytes to improve the cyclability of sodium-ion batteries, and some progress has been achieved. The incorporation of additives into the electrolyte is a simple and efficient method of improving the cycle stability of sodium-ion batteries. Fluoroethylene carbonate (FEC) is generally considered to be a suitable additive for the formation of the anode solid electrolyte interphase (SEI), due to a relatively low-lying lowest unoccupied molecular orbital (LUMO). However, it is suggested that FEC it will not be oxidized on the cathode since it also has a relatively low highest occupied molecular orbital (HOMO). In this study, we investigated the effect of FEC as an additive on the cycle life of a sodium-ion battery with a P2-NaxCo0.7Mn0.3O2 (x approximate to 1) layered sodium transition metal oxide as the cathode active material, a sodium metal foil anode, a glass fiber separator, and an electrolyte composed of NaCIO4 and a varying mass content of FEC dissolved in propylene carbonate (PC). We analyzed the effect of the FEC additive on the morphology and chemical composition of the separator and cathode electrode surface using scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS), and studied the evolution of the crystalline structure of the cathode active material during charge and discharge using in situ X-ray diffraction (XRD). We found that an appropriate amount of FEC additive significantly suppressed the decomposition of the PC solvent, and assisted the formation of a NaF-rich protective layer on the cathode surface, which helped to maintain the structural stability of the cathode material, thereby improving the cycle stability of the sodium-ion battery. Density functional theory (DFT) calculations showed that FEC coordinates more readily with the CIO4- anion on the cathode surface than does the PC solvent. This drives the formation of the NaF-rich protective layer on the cathode surface. We believe these results could provide inspiration in the design of electrolyte additives for protection of the sodium cathode during cycling, thus improving the cycling performance of sodium-ion batteries.
引用
收藏
页码:868 / 875
页数:8
相关论文
共 34 条
  • [1] Building better batteries
    Armand, M.
    Tarascon, J. -M.
    [J]. NATURE, 2008, 451 (7179) : 652 - 657
  • [2] IDENTIFICATION OF SURFACE-FILMS FORMED ON LITHIUM IN PROPYLENE CARBONATE SOLUTIONS
    AURBACH, D
    DAROUX, ML
    FAGUY, PW
    YEAGER, E
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1987, 134 (07) : 1611 - 1620
  • [3] Sodium Ion Insertion in Hollow Carbon Nanowires for Battery Applications
    Cao, Yuliang
    Xiao, Lifen
    Sushko, Maria L.
    Wang, Wei
    Schwenzer, Birgit
    Xiao, Jie
    Nie, Zimin
    Saraf, Laxmikant V.
    Yang, Zhengguo
    Liu, Jun
    [J]. NANO LETTERS, 2012, 12 (07) : 3783 - 3787
  • [4] Reduction Mechanism of Fluoroethylene Carbonate for Stable Solid-Electrolyte Interphase Film on Silicon Anode
    Chen, Xilin
    Li, Xiaolin
    Mei, Donghai
    Feng, Ju
    Hu, Mary Y.
    Hu, Jianzhi
    Engelhard, Mark
    Zheng, Jianming
    Xu, Wu
    Xiao, Jie
    Liu, Jun
    Zhang, Ji-Guang
    [J]. CHEMSUSCHEM, 2014, 7 (02) : 549 - 554
  • [5] Challenges in the development of advanced Li-ion batteries: a review
    Etacheri, Vinodkumar
    Marom, Rotem
    Elazari, Ran
    Salitra, Gregory
    Aurbach, Doron
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) : 3243 - 3262
  • [6] Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High-Rate and Extended Lifespan Cathode for Sodium-Ion Batteries
    Fang, Yongjin
    Xiao, Lifen
    Ai, Xinping
    Cao, Yuliang
    Yang, Hanxi
    [J]. ADVANCED MATERIALS, 2015, 27 (39) : 5895 - 5900
  • [7] Mesoporous Amorphous FePO4 Nanospheres as High-Performance Cathode Material for Sodium-Ion Batteries
    Fang, Yongjin
    Xiao, Lifen
    Qian, Jiangfeng
    Ai, Xinping
    Yang, Hanxi
    Cao, Yuliang
    [J]. NANO LETTERS, 2014, 14 (06) : 3539 - 3543
  • [8] Identification of Li battery electrolyte degradation products through direct synthesis and characterization of alkyl carbonate salts
    Gireaud, L
    Grugeon, S
    Laruelle, S
    Pilard, S
    Tarascon, JM
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2005, 152 (05) : A850 - A857
  • [9] Charge carriers in rechargeable batteries: Na ions vs. Li ions
    Hong, Sung You
    Kim, Youngjin
    Park, Yuwon
    Choi, Aram
    Choi, Nam-Soon
    Lee, Kyu Tae
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (07) : 2067 - 2081
  • [10] Fluoroethylene Carbonate Induces Ordered Electrolyte Interface on Silicon and Sapphire Surfaces as Revealed by Sum Frequency Generation Vibrational Spectroscopy and X-ray Reflectivity
    Horowitz, Yonatan
    Steinruck, Hans-Georg
    Han, Hui-Ling
    Cao, Chuntian
    Abate, Iwnetim Iwnetu
    Tsao, Yuchi
    Toney, Michael F.
    Somorjai, Gabor A.
    [J]. NANO LETTERS, 2018, 18 (03) : 2105 - 2111