The empirical Bayes estimators of the mean and variance parameters of the normal distribution with a conjugate normal-inverse-gamma prior by the moment method and the MLE method

被引:13
|
作者
Zhang, Ying-Ying [1 ]
Rong, Teng-Zhong [1 ]
Li, Man-Man [1 ]
机构
[1] Chongqing Univ, Coll Math & Stat, Dept Stat & Actuarial Sci, Chongqing 401331, Peoples R China
基金
中国国家自然科学基金;
关键词
Empirical bayes estimators; moment method; maximum likelihood estimation (MLE) method; normal distribution with normal-inverse-gamma prior; non standardized student-t distribution; 62C12; 62F10; 62F15; MODELS;
D O I
10.1080/03610926.2018.1465081
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Most of the samples in the real world are from the normal distributions with unknown mean and variance, for which it is common to assume a conjugate normal-inverse-gamma prior. We calculate the empirical Bayes estimators of the mean and variance parameters of the normal distribution with a conjugate normal-inverse-gamma prior by the moment method and the Maximum Likelihood Estimation (MLE) method in two theorems. After that, we illustrate the two theorems for the monthly simple returns of the Shanghai Stock Exchange Composite Index.
引用
收藏
页码:2286 / 2304
页数:19
相关论文
共 12 条