Computation of probabilistic hazard maps and source parameter estimation for volcanic ash transport and dispersion

被引:44
|
作者
Madankan, R. [1 ]
Pouget, S. [2 ]
Singla, P. [1 ]
Bursik, M. [2 ]
Dehn, J. [5 ]
Jones, M. [3 ]
Patra, A. [1 ]
Pavolonis, M. [6 ]
Pitman, E. B. [4 ]
Singh, T. [1 ]
Webley, P. [5 ]
机构
[1] SUNY Buffalo, Dept Mech & Aerosp Engn, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Geol, Buffalo, NY 14260 USA
[3] SUNY Buffalo, Ctr Computat Res, Buffalo, NY 14260 USA
[4] SUNY Buffalo, Dept Math, Buffalo, NY 14260 USA
[5] Univ Alaska, Inst Geophys, Fairbanks, AK USA
[6] NOAA NESDIS, Ctr Satellite Applicat & Res, Madison, WI USA
基金
美国国家科学基金会;
关键词
Inverse problem; Source parameter estimation; Polynomial chaos; Minimum variance estimator; Hazard map; POLYNOMIAL-CHAOS; VALIDATION; MODEL;
D O I
10.1016/j.jcp.2013.11.032
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Volcanic ash advisory centers are charged with forecasting the movement of volcanic ash plumes, for aviation, health and safety preparation. Deterministic mathematical equations model the advection and dispersion of these plumes. However initial plume conditions - height, profile of particle location, volcanic vent parameters - are known only approximately at best, and other features of the governing system such as the windfield are stochastic. These uncertainties make forecasting plume motion difficult. As a result of these uncertainties, ash advisories based on a deterministic approach tend to be conservative, and many times over/under estimate the extent of a plume. This paper presents an end-to-end framework for generating a probabilistic approach to ash plume forecasting. This framework uses an ensemble of solutions, guided by Conjugate Unscented Transform (CUT) method for evaluating expectation integrals. This ensemble is used to construct a polynomial chaos expansion that can be sampled cheaply, to provide a probabilistic model forecast. The CUT method is then combined with a minimum variance condition, to provide a full posterior pdf of the uncertain source parameters, based on observed satellite imagery. The April 2010 eruption of the Eyjafjallajokull volcano in Iceland is employed as a test example. The puff advection/dispersion model is used to hindcast the motion of the ash plume through time, concentrating on the period 14-16 April 2010. Variability in the height and particle loading of that eruption is introduced through a volcano column model called bent. Output uncertainty due to the assumed uncertain input parameter probability distributions, and a probabilistic spatial-temporal estimate of ash presence are computed. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:39 / 59
页数:21
相关论文
共 47 条
  • [1] Estimation of optimal dispersion model source parameters using satellite detections of volcanic ash
    Zidikheri, Meelis J.
    Lucas, Christopher
    Potts, Rodney J.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2017, 122 (15) : 8207 - 8232
  • [2] The Impact of Eruption Source Parameter Uncertainties on Ash Dispersion Forecasts During Explosive Volcanic Eruptions
    Dioguardi, Fabio
    Beckett, Frances
    Durig, Tobias
    Stevenson, John A.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (17)
  • [3] VOLCANIC ASH FORECAST TRANSPORT AND DISPERSION (VAFTAD) MODEL
    HEFFTER, JL
    STUNDER, BJB
    [J]. WEATHER AND FORECASTING, 1993, 8 (04) : 533 - 541
  • [4] Estimation and propagation of volcanic source parameter uncertainty in an ash transport and dispersal model: application to the Eyjafjallajokull plume of 14–16 April 2010
    Marcus Bursik
    Matthew Jones
    Simon Carn
    Ken Dean
    Abani Patra
    Michael Pavolonis
    E. Bruce Pitman
    Tarunraj Singh
    Puneet Singla
    Peter Webley
    Halldor Bjornsson
    Maurizio Ripepe
    [J]. Bulletin of Volcanology, 2012, 74 : 2321 - 2338
  • [5] Automated source term and wind parameter estimation for atmospheric transport and dispersion applications
    Bieringer, Paul E.
    Rodriguez, Luna M.
    Vandenberghe, Francois
    Hurst, Jonathan G.
    Bieberbach, George, Jr.
    Sykes, Ian
    Hannan, John R.
    Zaragoza, Jake
    Fry, Richard N., Jr.
    [J]. ATMOSPHERIC ENVIRONMENT, 2015, 122 : 206 - 219
  • [6] Workflows for Construction of Spatio-Temporal Probabilistic Maps for Volcanic Hazard Assessment
    Jones-Ivey, Renette
    Patra, Abani
    Bursik, Marcus
    [J]. FRONTIERS IN EARTH SCIENCE, 2022, 9
  • [7] PyBetVH: A Python']Python tool for probabilistic volcanic hazard assessment and for generation of Bayesian hazard curves and maps
    Tonini, Roberto
    Sandri, Laura
    Thompson, Mary Anne
    [J]. COMPUTERS & GEOSCIENCES, 2015, 79 : 38 - 46
  • [8] Estimation and propagation of volcanic source parameter uncertainty in an ash transport and dispersal model: application to the Eyjafjallajokull plume of 14-16 April 2010
    Bursik, Marcus
    Jones, Matthew
    Carn, Simon
    Dean, Ken
    Patra, Abani
    Pavolonis, Michael
    Pitman, E. Bruce
    Singh, Tarunraj
    Singla, Puneet
    Webley, Peter
    Bjornsson, Halldor
    Ripepe, Maurizio
    [J]. BULLETIN OF VOLCANOLOGY, 2012, 74 (10) : 2321 - 2338
  • [9] Clarifying the differences between traditional liquefaction hazard maps and probabilistic liquefaction reference parameter maps
    Franke, Kevin W.
    Ulmer, Kristin J.
    Ekstrom, Levi T.
    Meneses, Jorge F.
    [J]. SOIL DYNAMICS AND EARTHQUAKE ENGINEERING, 2016, 90 : 240 - 249
  • [10] Probabilistic Volcanic Ash Hazard Analysis (PVAHA) I: Development of the VAPAH tool for emulating multi-scale volcanic ash fall analysis
    Bear-Crozier A.N.
    Miller V.
    Newey V.
    Horspool N.
    Weber R.
    [J]. Journal of Applied Volcanology, 5 (1)