ENTANGLEMENT AND THERMODYNAMICS OF BLACK HOLE ENTROPY

被引:2
|
作者
Brout, R. [1 ,2 ,3 ]
机构
[1] Perimeter Inst Theoret Phys, Waterloo, ON N2L 2Y5, Canada
[2] Univ Waterloo, Dept Appl Math & Phys, Waterloo, ON N2L 3G1, Canada
[3] Univ Libre Bruxelles, Serv Phys Theor, Int Solvay Inst, B-1050 Brussels, Belgium
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2008年 / 17卷 / 13-14期
关键词
D O I
10.1142/S0218271808014187
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Using simple conditions drawn from the stability of the cosmos in terms of vacuum energy density, the cutoff momentum of entanglement is related to the Planckian mass. In so doing the black hole entropy is shown to be independent of the number of field species that contribute to vacuum fluctuations. And this is in spite of the fact that the number of field species is a linear multiplicand of the entanglement entropy when the latter is expressed in terms of the fundamental momentum cutoff of all fields.
引用
收藏
页码:2549 / 2553
页数:5
相关论文
共 50 条
  • [1] Thermodynamics of BTZ black hole and entanglement entropy
    Singh, Dharm Veer
    Siwach, Sanjay
    [J]. NATIONAL CONFERENCE ON CONTEMPORARY ISSUES IN HIGH ENERGY PHYSICS AND COSMOLOGY (NC-HEPC 2013), 2014, 481
  • [2] Black hole entanglement entropy
    Tejeiro-Sarmiento, Juan Manuel
    Arenas-Salazar, Jose Robel
    [J]. CENTURY OF RELATIVITY PHYSICS, 2006, 841 : 385 - +
  • [3] BLACK-HOLE ENTROPY AND ENTROPY OF ENTANGLEMENT
    KABAT, D
    [J]. NUCLEAR PHYSICS B, 1995, 453 (1-2) : 281 - 299
  • [4] Entanglement entropy of the black hole horizon
    Terashima, H
    [J]. PHYSICAL REVIEW D, 2000, 61 (10)
  • [5] ENTROPY AND BLACK-HOLE THERMODYNAMICS
    WALD, RM
    [J]. PHYSICAL REVIEW D, 1979, 20 (06): : 1271 - 1282
  • [6] Entropy in the interior of a black hole and thermodynamics
    Zhang, Baocheng
    [J]. PHYSICAL REVIEW D, 2015, 92 (08):
  • [7] Black hole entropy as entanglement entropy: a holographic derivation
    Emparan, Roberto
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2006, (06):
  • [8] Black hole thermodynamics from entanglement mechanics
    Chandran, S. Mahesh
    Shankaranarayanan, S.
    [J]. SIXTEENTH MARCEL GROSSMANN MEETING, 2023, : 1223 - 1237
  • [9] Finiteness of entanglement entropy in a quantum black hole
    Wen, Wen-Yu
    [J]. EPL, 2016, 113 (06)
  • [10] Holographic Entanglement Entropy of the BTZ Black Hole
    Mariano Cadoni
    Maurizio Melis
    [J]. Foundations of Physics, 2010, 40 : 638 - 657