An Algorithm for Listing all Minimal Double Dominating Sets of a Tree

被引:0
|
作者
Krzywkowski, Marcin [1 ,2 ]
机构
[1] Gdansk Univ Technol, Fac Elect Telecommun & Informat, Gdansk, Poland
[2] Polish Acad Sci, Inst Math, PL-00901 Warsaw, Poland
关键词
domination; double domination; minimal double dominating set; tree; combinatorial bound; exact exponential algorithm; listing algorithm;
D O I
10.3233/FI-2014-998
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We provide an algorithm for listing all minimal double dominating sets of a tree of order n in time O(1.3248(n)). This implies that every tree has at most 1.3248(n) minimal double dominating sets. We also show that this bound is tight.
引用
收藏
页码:415 / 421
页数:7
相关论文
共 50 条
  • [1] Minimal Double Dominating Sets in Trees
    Krzywkowski, Marcin
    FRONTIERS IN ALGORITHMICS, FAW 2014, 2014, 8497 : 151 - 157
  • [2] An Incremental Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets
    Golovach, Petr A.
    Heggernes, Pinar
    Kratsch, Dieter
    Villanger, Yngve
    ALGORITHMICA, 2015, 72 (03) : 836 - 859
  • [3] An Incremental Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets
    Golovach, Petr A.
    Heggernes, Pinar
    Kratsch, Dieter
    Villanger, Yngve
    AUTOMATA, LANGUAGES, AND PROGRAMMING, PT I, 2013, 7965 : 485 - 496
  • [4] An Incremental Polynomial Time Algorithm to Enumerate All Minimal Edge Dominating Sets
    Petr A. Golovach
    Pinar Heggernes
    Dieter Kratsch
    Yngve Villanger
    Algorithmica, 2015, 72 : 836 - 859
  • [5] Dominating Sets and Independent Sets in a Tree
    Jou, Min-Jen
    ARS COMBINATORIA, 2010, 96 : 499 - 503
  • [6] Counting Minimal Dominating Sets
    Kante, Mamadou Moustapha
    Uno, Takeaki
    THEORY AND APPLICATIONS OF MODELS OF COMPUTATION (TAMC 2017), 2017, 10185 : 332 - 346
  • [7] VERTICES BELONGING TO ALL OR TO NO MINIMUM DOUBLE DOMINATING SETS IN TRESS
    Blidia, Mostafa
    Chellali, Mustapha
    Khelifi, Soufiane
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2005, 2 (01) : 1 - 9
  • [8] VERTICES CONTAINED IN ALL OR IN NO MINIMUM K-DOMINATING SETS OF A TREE
    Meddah, Nacera
    Blidia, Mostafa
    AKCE INTERNATIONAL JOURNAL OF GRAPHS AND COMBINATORICS, 2014, 11 (01) : 105 - 113
  • [9] Vertices contained in all or in no Minimum Liar's Dominating Sets of a Tree
    Panda, B.S.
    Paul, S.
    Journal of Combinatorial Mathematics and Combinatorial Computing, 2015, 93 : 65 - 90
  • [10] Vertices contained in all minimum paired-dominating sets of a tree
    Xue-gang Chen
    Czechoslovak Mathematical Journal, 2007, 57 : 407 - 417