Boundedness and Compactness of Hankel Operators on Large Fock Space

被引:3
|
作者
Wang, Xiaofeng [1 ,2 ]
Zeng, Zhicheng [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Guangdong Higher Educ Inst, Key Lab Math & Interdisciplinary Sci, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
MEAN-OSCILLATION; BMO;
D O I
10.1155/2022/7035925
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the BMO spaces and use them to characterize complex-valued functions f such that the big Hankel operators H-f and H-f over bar are both bounded or compact from a weighted large Fock space F-p phi into a weighted Lebesgue space L-p phi when 1 & LE;p <& INFIN;.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Boundedness and Compactness of Operators on the Fock Space
    Wang, Xiaofeng
    Cao, Guangfu
    Zhu, Kehe
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2013, 77 (03) : 355 - 370
  • [2] Boundedness and Compactness of Operators on the Fock Space
    Xiaofeng Wang
    Guangfu Cao
    Kehe Zhu
    Integral Equations and Operator Theory, 2013, 77 : 355 - 370
  • [3] ON THE BOUNDEDNESS AND COMPACTNESS OF OPERATORS OF HANKEL TYPE
    BEATROUS, F
    LI, SY
    JOURNAL OF FUNCTIONAL ANALYSIS, 1993, 111 (02) : 350 - 379
  • [4] Boundedness and compactness of Hankel operators on the sphere
    Xia, Jingbo
    JOURNAL OF FUNCTIONAL ANALYSIS, 2008, 255 (01) : 25 - 45
  • [5] BOUNDEDNESS AND COMPACTNESS OF HAUSDORFF OPERATORS ON FOCK SPACES
    Blasco, Oscar
    Galbis, Antonio
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 377 (07) : 5165 - 5196
  • [6] Intermediate Hankel operators on the Fock space
    Constantin, Olivia
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 471 (1-2) : 687 - 691
  • [7] Generalized Hankel operators on the Fock space
    Schneider, Georg
    Schneider, Kristan A.
    MATHEMATISCHE NACHRICHTEN, 2009, 282 (12) : 1811 - 1826
  • [8] Products of Hankel operators on the Fock space
    Ma, Pan
    Yan, Fugang
    Zheng, Dechao
    Zhu, Kehe
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (08) : 2644 - 2663
  • [9] Boundedness and compactness of generalized Hankel operators on bounded symmetric domains
    Arazy, J
    JOURNAL OF FUNCTIONAL ANALYSIS, 1996, 137 (01) : 97 - 151
  • [10] The Kernels of Hankel Operators on the Full Fock Space
    Senhua Zhu
    Yufeng Lu
    Complex Analysis and Operator Theory, 2023, 17