An algebraic approach to quantum information theory with applications in quantum cryptography

被引:0
|
作者
Tuyls, P [1 ]
机构
[1] Philips Res Labs, NL-5656 AA Eindhoven, Netherlands
关键词
D O I
10.1109/ISIT.2002.1023374
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present an algebraic approach to quantum information theory and its application to quantum cryptography. Therefore, we model the measurement process in terms of an algebraic object: a partition of unity. The POVM associated to such a partition describes the measurement results and the completely positive map associated to it the disturbance of the state. This approach leads to a compact description of quantum cryptography in which general measurements, noisy channels as well as measurement apparati of the receiver that are out of sync with those of the sender can be described.
引用
收藏
页码:102 / 102
页数:1
相关论文
共 50 条
  • [1] ALGEBRAIC APPROACH TO QUANTUM FIELD THEORY
    HAAG, R
    KASTLER, D
    JOURNAL OF MATHEMATICAL PHYSICS, 1964, 5 (07) : 848 - &
  • [2] A unified algebraic approach to quantum theory
    Monk, NAM
    Hiley, BJ
    FOUNDATIONS OF PHYSICS LETTERS, 1998, 11 (04) : 371 - 377
  • [3] Quantum Cryptography for Information-Theoretic Security Quantum Cryptography
    Sanders, Barry
    TECHNOLOGICAL INNOVATIONS IN SENSING AND DETECTION OF CHEMICAL, BIOLOGICAL, RADIOLOGICAL, NUCLEAR THREATS AND ECOLOGICAL TERRORISM, 2012, : 335 - 343
  • [4] The physics of quantum information: quantum cryptography, quantum teleportation, quantum computation
    Duwell, A
    STUDIES IN HISTORY AND PHILOSOPHY OF MODERN PHYSICS, 2003, 34B (02): : 331 - 334
  • [5] AN ALGEBRAIC APPROACH TO THE QUANTUM-THEORY OF MEASUREMENTS
    MAKI, Z
    PROGRESS OF THEORETICAL PHYSICS, 1990, 84 (04): : 574 - 583
  • [6] ALGEBRAIC APPROACH IN QUANTUM CHROMODYNAMICS AND ELECTROWEAK THEORY
    ONEDA, S
    TERASAKI, K
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1985, (82): : 1 - 164
  • [7] Clifford algebras, algebraic spinors, quantum information and applications
    Trindade, Marco A. S.
    Floquet, Sergio
    Vianna, J. David M.
    MODERN PHYSICS LETTERS A, 2020, 35 (29)
  • [8] On quantum cryptography and number theory
    Trushechkin, Anton S.
    Volovich, Igor V.
    P-ADIC MATHEMATICAL PHYSICS, 2006, 826 : 345 - +
  • [9] Algebraic Structures Underlying Quantum Independences: Theory and Applications
    R. Chétrite
    F. Patras
    Annales Henri Poincaré, 2024, 25 : 253 - 296
  • [10] Algebraic Structures Underlying Quantum Independences: Theory and Applications
    Chetrite, R.
    Patras, F.
    ANNALES HENRI POINCARE, 2024, 25 (01): : 253 - 296