One-sided reflected Brownian motions and the KPZ fixed point

被引:18
|
作者
Nica, Mihai [1 ]
Quastel, Jeremy [1 ]
Remenik, Daniel [2 ,3 ]
机构
[1] Univ Toronto, Dept Math, 40 St George St, Toronto, ON M5S 2E4, Canada
[2] Univ Chile, Dept Ingn Matemat, Ave Beauchef 851,Piso 5, Santiago, Chile
[3] Univ Chile, Ctr Modelamiento Matemat UMI CNRS 2807, Ave Beauchef 851,Piso 5, Santiago, Chile
来源
基金
加拿大自然科学与工程研究理事会;
关键词
60K35; 82C22; SCALING LIMIT;
D O I
10.1017/fms.2020.56
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the system of one-sided reflected Brownian motions that is in variational duality with Brownian last passage percolation. We show that it has integrable transition probabilities, expressed in terms of Hermite polynomials and hitting times of exponential random walks, and that it converges in the 1:2:3 scaling limit to the KPZ fixed point, the scaling-invariant Markov process defined in [MQR17] and believed to govern the long-time, large-scale fluctuations for all models in the KPZ universality class. Brownian last-passage percolation was shown recently in [DOV18] to converge to the Airy sheet (or directed landscape), defined there as a strong limit of a functional of the Airy line ensemble. This establishes the variational formula for the KPZ fixed point in terms of the Airy sheet.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Brownian motions with one-sided collisions: the stationary case
    Ferrari, Patrik L.
    Spohn, Herbert
    Weiss, Thomas
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 41
  • [2] SCALING LIMIT FOR BROWNIAN MOTIONS WITH ONE-SIDED COLLISIONS
    Ferrari, Patrik L.
    Spohn, Herbert
    Weiss, Thomas
    [J]. ANNALS OF APPLIED PROBABILITY, 2015, 25 (03): : 1349 - 1382
  • [3] BROWNIAN STRUCTURE IN THE KPZ FIXED POINT
    Calvert, Jacob
    Hammond, Alan
    Hegde, Milind
    [J]. ASTERISQUE, 2023, (441) : 1 - +
  • [4] Point-interacting Brownian motions in the KPZ universality class
    Sasamoto, Tomohiro
    Spohn, Herbert
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2015, 20 : 1 - 28
  • [5] On the first passage of one-sided Levy motions
    Eliazar, I
    Klafter, J
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 336 (3-4) : 219 - 244
  • [6] HANKE POINT OF VIEW ONE-SIDED
    GRAESER, HJ
    [J]. JOURNAL AMERICAN WATER WORKS ASSOCIATION, 1983, 75 (08): : A19 - A19
  • [7] Ballistic aggregation for one-sided Brownian initial velocity
    Valageas, Patrick
    [J]. PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2009, 388 (07) : 1031 - 1045
  • [8] ON THE ONE-SIDED EXIT PROBLEM FOR FRACTIONAL BROWNIAN MOTION
    Aurzada, Frank
    [J]. ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2011, 16 : 392 - 404
  • [9] ONE-SIDED EXCURSIONS OF BROWNIAN-MOTION, AND AN APPLICATION
    IMHOF, JP
    [J]. JOURNAL OF APPLIED PROBABILITY, 1978, 15 (03) : 635 - 638
  • [10] THE TANGENT APPROXIMATION TO ONE-SIDED BROWNIAN EXIT DENSITIES
    FEREBEE, B
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1982, 61 (03): : 309 - 326