The origin and evolution of the Peace Vallis fan system that drains to the Curiosity landing area, Gale Crater, Mars

被引:106
|
作者
Palucis, Marisa C. [1 ]
Dietrich, William E. [1 ]
Hayes, Alexander G. [2 ]
Williams, Rebecca M. E. [3 ]
Gupta, Sanjeev [4 ]
Mangold, Nicholas [5 ]
Newsom, Horton [6 ]
Hardgrove, Craig [7 ]
Calef, Fred, III [8 ]
Sumner, Dawn Y. [9 ]
机构
[1] Univ Calif Berkeley, Dept Earth & Planetary Sci, Berkeley, CA 94720 USA
[2] Cornell Univ, Dept Astron, Ithaca, NY 14853 USA
[3] Planetary Sci Inst, Tucson, AZ USA
[4] Univ London Imperial Coll Sci Technol & Med, Dept Earth Sci & Engn, London, England
[5] Univ Nantes, Lab Planetol & Geodynam Nantes, CNRS UMR 6112, Nantes, France
[6] Univ New Mexico, Inst Meteorit, Albuquerque, NM 87131 USA
[7] Arizona State Univ, Sch Earth & Space Explorat, Tempe, AZ USA
[8] CALTECH, NASA Jet Prop Lab, Pasadena, CA 91125 USA
[9] Univ Calif Davis, Dept Geol, Davis, CA 95616 USA
关键词
Peace Vallis Fan; MSL; Gale Crater; Mars; LARGE ALLUVIAL FANS; SEDIMENTARY-ROCKS; CLIMATE; CONSTRAINTS; DEPOSITS; WATER;
D O I
10.1002/2013JE004583
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
The landing site for the Curiosity rover is located at the distal end of the Peace Vallis fan in Gale Crater. Peace Vallis fan covers 80km(2) and is fed by a 730km(2) catchment, which drains an upland plains area through a 15km wide gap in the crater rim. Valley incision into accumulated debris delivered sediment through a relatively low density valley network to a main stem channel to the fan. An estimated total fan volume of 0.9km(3) matches the calculated volume of removal due to valley incision (0.8km(3)) and indicates a mean thickness of 9m. The fan profile is weakly concave up with a mean slope of 1.5% for the lower portion. Numerous inverted channels outcrop on the western surface of the fan, but on the eastern portion such channels are rare suggesting a change in process from distributary channel domination on the west to sheet flow on the eastern portion of the fan. Runoff (discharge/watershed area) to produce the fan is estimated to be more than 600m, perhaps as much as 6000m, indicating a hydrologic cycle that likely lasted at least thousands of years. Atmospheric precipitation (possibly snow) not seepage produced the runoff. Based on topographic data, Peace Vallis fan likely onlapped Bradbury Rise and spilled into a topographic low to the east of the rise. This argues that the light-toned fractured terrain within this topographic low corresponds to the distal deposits of Peace Vallis fan, and in such a setting, lacustrine deposits are expected.
引用
收藏
页码:705 / 728
页数:24
相关论文
共 7 条
  • [1] Origin and significance of decameter-scale polygons in the lower Peace Vallis fan of Gale crater, Mars
    Oehler, Dorothy Z.
    Mangold, Nicolas
    Hallet, Bernard
    Fairen, Alberto G.
    Le Deit, Laetitia
    Williams, Amy J.
    Sletten, Ronald S.
    Martinez-Frias, Jesus
    [J]. ICARUS, 2016, 277 : 56 - 72
  • [2] Gale crater: the Mars Science Laboratory/Curiosity Rover Landing Site
    Wray, James J.
    [J]. INTERNATIONAL JOURNAL OF ASTROBIOLOGY, 2013, 12 (01) : 25 - 38
  • [3] Constraints on the origin and evolution of the layered mound in Gale Crater, Mars using Mars Reconnaissance Orbiter data
    Thomson, B. J.
    Bridges, N. T.
    Milliken, R.
    Baldridge, A.
    Hook, S. J.
    Crowley, J. K.
    Marion, G. M.
    de Souza Filho, C. R.
    Brown, A. J.
    Weitz, C. M.
    [J]. ICARUS, 2011, 214 (02) : 413 - 432
  • [4] Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars
    Arvidson, R. E.
    DeGrosse, P., Jr.
    Grotzinger, J. P.
    Heverly, M. C.
    Shechet, J.
    Moreland, S. J.
    Newby, M. A.
    Stein, N.
    Steffy, A. C.
    Zhou, F.
    Zastrow, A. M.
    Vasavada, A. R.
    Fraeman, A. A.
    Stilly, E. K.
    [J]. JOURNAL OF TERRAMECHANICS, 2017, 73 : 73 - 93
  • [5] Evidence for a Diagenetic Origin of Vera Rubin Ridge, Gale Crater, Mars: Summary and Synthesis of Curiosity's Exploration Campaign
    Fraeman, A. A.
    Edgar, L. A.
    Rampe, E. B.
    Thompson, L. M.
    Frydenvang, J.
    Fedo, C. M.
    Catalano, J. G.
    Dietrich, W. E.
    Gabriel, T. S. J.
    Vasavada, A. R.
    Grotzinger, J. P.
    L'Haridon, J.
    Mangold, N.
    Sun, V. Z.
    House, C. H.
    Bryk, A. B.
    Hardgrove, C.
    Czarnecki, S.
    Stack, K. M.
    Morris, R. V.
    Arvidson, R. E.
    Banham, S. G.
    Bennett, K. A.
    Bridges, J. C.
    Edwards, C. S.
    Fischer, W. W.
    Fox, V. K.
    Gupta, S.
    Horgan, B. H. N.
    Jacob, S. R.
    Johnson, J. R.
    Johnson, S. S.
    Rubin, D. M.
    Salvatore, M. R.
    Schwenzer, S. P.
    Siebach, K. L.
    Stein, N. T.
    Turner, S. M. R.
    Wellington, D. F.
    Wiens, R. C.
    Williams, A. J.
    David, G.
    Wong, G. M.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (12)
  • [6] Elemental Composition and Chemical Evolution of Geologic Materials in Gale Crater, Mars: APXS Results From Bradbury Landing to the Vera Rubin Ridge
    Berger, Jeff A.
    Gellert, Ralf
    Boyd, Nicholas I.
    King, Penelope L.
    McCraig, Michael A.
    O'Connell-Cooper, Catherine D.
    Schmidt, Mariek E.
    Spray, John G.
    Thompson, Lucy M.
    VanBommel, Scott J. V.
    Yen, Albert S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2020, 125 (12)
  • [7] Modeling the thermal and physical evolution of Mount Sharp's sedimentary rocks, Gale Crater, Mars: Implications for diagenesis on the MSL Curiosity rover traverse
    Borlina, Caue S.
    Ehlmann, Bethany L.
    Kite, Edwin S.
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 2015, 120 (08) : 1396 - 1414