Product partition latent variable model for multiple change-point detection in multivariate data

被引:2
|
作者
Nyamundanda, Gift [1 ]
Hegarty, Avril [1 ]
Hayes, Kevin [1 ]
机构
[1] Univ Limerick, Dept Math & Stat, Limerick, Ireland
基金
爱尔兰科学基金会;
关键词
PPM; PPLVM; dimensionality reduction; multivariate; Gaussian;
D O I
10.1080/02664763.2015.1029444
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The product partition model (PPM) is a well-established efficient statistical method for detecting multiple change points in time-evolving univariate data. In this article, we refine the PPM for the purpose of detecting multiple change points in correlated multivariate time-evolving data. Our model detects distributional changes in both the mean and covariance structures of multivariate Gaussian data by exploiting a smaller dimensional representation of correlated multiple time series. The utility of the proposed method is demonstrated through experiments on simulated and real datasets.
引用
收藏
页码:2321 / 2334
页数:14
相关论文
共 50 条
  • [1] A Dirichlet process model for change-point detection with multivariate bioclimatic data
    Mastrantonio, Gianluca
    Jona Lasinio, Giovanna
    Pollice, Alessio
    Teodonio, Lorenzo
    Capotorti, Giulia
    [J]. ENVIRONMETRICS, 2022, 33 (01)
  • [2] Latent change-point detection in ordinal categorical data
    Wang, Junjie
    Ding, Dong
    Su, Qin
    [J]. QUALITY AND RELIABILITY ENGINEERING INTERNATIONAL, 2019, 35 (02) : 504 - 516
  • [3] Change-Point Detection in Multivariate Categorical Processes With Variable Selection
    He, Qing
    Liu, Weiyan
    Wang, Junjie
    [J]. IEEE ACCESS, 2019, 7 : 73065 - 73075
  • [4] ROBUST RETROSPECTIVE MULTIPLE CHANGE-POINT ESTIMATION FOR MULTIVARIATE DATA
    Lung-Yut-Fong, Alexandre
    Levy-Leduc, Celine
    Cappe, Olivier
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 405 - 408
  • [5] Multiple Change-Point Detection in Spatiotemporal Seismicity Data
    Fiedler, Bernhard
    Zoeller, Gert
    Holschneider, Matthias
    Hainzl, Sebastian
    [J]. BULLETIN OF THE SEISMOLOGICAL SOCIETY OF AMERICA, 2018, 108 (3A) : 1147 - 1159
  • [6] Multiple change-point detection of multivariate mean vectors with the Bayesian approach
    Cheon, Sooyoung
    Kim, Jaehee
    [J]. COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2010, 54 (02) : 406 - 415
  • [7] Semiparametric Multivariate and Multiple Change-Point Modeling
    Peluso, Stefano
    Chib, Siddhartha
    Mira, Antonietta
    [J]. BAYESIAN ANALYSIS, 2019, 14 (03): : 727 - 751
  • [8] A Gibbs sampling scheme to the product partition model: an application to change-point problems
    Loschi, RH
    Cruz, FRB
    Iglesias, PL
    Arellano-Valle, RB
    [J]. COMPUTERS & OPERATIONS RESEARCH, 2003, 30 (03) : 463 - 482
  • [9] Directional Change-Point Detection for Process Control with Multivariate Categorical Data
    Li, Jian
    Tsung, Fugee
    Zou, Changliang
    [J]. NAVAL RESEARCH LOGISTICS, 2013, 60 (02) : 160 - 173
  • [10] Generalized multiple change-point detection in the structure of multivariate, possibly high-dimensional, data sequences
    Andreas Anastasiou
    Angelos Papanastasiou
    [J]. Statistics and Computing, 2023, 33