Automatic Microaneurysm Detection from Non-dilated Diabetic Retinopathy Retinal Images

被引:0
|
作者
Sopharak, Akara [1 ]
Uyyanonvara, Bunyarit [2 ]
Barman, Sarah [3 ]
Williamson, Tom [4 ]
机构
[1] Burapha Univ, Fac Sci & Arts, Chanthaburi Campus,57 Moo 1, Thamai 22170, Chantaburi, Thailand
[2] Thammasat Univ, Sirindhorn Int Inst Technol, Muang 12000, Pathumthani, Thailand
[3] Univ Kingston, Kingston Upon Thames KT1 2EE, Surrey, England
[4] St Thomas Hosp, Dept Ophthalmol, London SE1 7EH, England
关键词
diabetic retinopathy; microaneurysms; EXUDATE DETECTION;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Microaneurysms are the first clinical sign of diabetic retinopathy. The number of microaneurysms is used to indicate the severity of the disease. Early microaneurysm detection can help reduce the incidence of blindness. This paper investigates a set of optimally adjusted morphological operators used for microaneurysm detection on non-dilated pupil and low-contrast retinal images. The detected microaneurysms are validated by comparing with ophthalmologists' hand-drawn ground-truth. As a result, the sensitivity, specificity, precision and accuracy were 81.61, 99.99, 63.76 and 99.98%, respectively.
引用
收藏
页码:1583 / 1586
页数:4
相关论文
共 50 条
  • [1] Simple hybrid method for fine microaneurysm detection from non-dilated diabetic retinopathy retinal images
    Sopharak, Akara
    Uyyanonvara, Bunyarit
    Barman, Sarah
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2013, 37 (5-6) : 394 - 402
  • [2] Automatic detection of diabetic retinopathy exudates from non-dilated retinal images using mathematical morphology methods
    Sopharak, Akara
    Uyyanonvara, Bunyarit
    Barman, Sarah
    Williamson, Thomas H.
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2008, 32 (08) : 720 - 727
  • [3] Automatic Exudate Detection from Non-dilated Diabetic Retinopathy Retinal Images Using Fuzzy C-means Clustering
    Sopharak, Akara
    Uyyanonvara, Bunyarit
    Barman, Sarah
    [J]. SENSORS, 2009, 9 (03) : 2148 - 2161
  • [4] Automatic Microaneurysm Detection of Diabetic Retinopathy in Fundus Images
    Zhou, Wei
    Wu, Chengdong
    Chen, Dali
    Wang, Zhenzhu
    Yi, Yugen
    Du, Wenyou
    [J]. 2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 7453 - 7458
  • [5] A Survey on Automated Microaneurysm Detection in Diabetic Retinopathy Retinal Images
    Agrawal, Ankita
    Bhatnagar, Charul
    Jalal, Anand Singh
    [J]. PROCEEDINGS OF THE 2013 INTERNATIONAL CONFERENCE ON INFORMATION SYSTEMS AND COMPUTER NETWORKS (ISCON), 2013, : 24 - 29
  • [6] Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images
    Sopharak, Akara
    Uyyanonvara, Bunyarit
    Barman, Sarah
    [J]. MAEJO INTERNATIONAL JOURNAL OF SCIENCE AND TECHNOLOGY, 2013, 7 (02) : 294 - 314
  • [7] Automatic Detection of Hard Exudates in Retinal Images with Diabetic Retinopathy
    Canche, Mario
    Dalmau, Oscar
    Garcia Gadanon, Maria
    [J]. PROCEEDINGS OF A SPECIAL SESSION 2017 SIXTEENTH MEXICAN INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (MICAI): ADVANCES IN ARTIFICIAL INTELLIGENCE, 2017, : 53 - 59
  • [8] Improved Microaneurysm Detection in Fundus Images for Diagnosis of Diabetic Retinopathy
    Dharani, V.
    Lavanya, R.
    [J]. ADVANCES IN SIGNAL PROCESSING AND INTELLIGENT RECOGNITION SYSTEMS, 2018, 678 : 185 - 198
  • [9] Automatic Detection of Diabetic Retinopathy from Retinal Fundus Images Using MobileNet Model
    Das, Smita
    Mishra, Madhusudhan
    Majumder, Swanirbhar
    [J]. COMMUNICATION AND INTELLIGENT SYSTEMS, VOL 1, ICCIS 2023, 2024, 967 : 303 - 313
  • [10] Automatic Detection of Blood Vessels in Retinal Images for Diabetic Retinopathy Diagnosis
    Raja, D. Siva Sundhara
    Vasuki, S.
    [J]. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE, 2015, 2015