Nonmagnetic impurities in skyrmion racetrack memory

被引:4
|
作者
Potkina, M. N. [1 ,2 ,3 ,4 ]
Lobanov, I. S. [1 ,2 ]
Uzdin, V. M. [1 ,2 ]
机构
[1] ITMO Univ, Kronverkskiy 49, St Petersburg 197101, Russia
[2] St Petersburg State Univ, St Petersburg 198504, Russia
[3] Univ Iceland, Sci Inst, IS-107 Reykjavik, Iceland
[4] Univ Iceland, Fac Phys Sci, IS-107 Reykjavik, Iceland
来源
基金
俄罗斯科学基金会;
关键词
skyrmion; racetrack memory; impurity; pinning; transition state; stability; MAGNETIC SKYRMIONS;
D O I
10.17586/2220-8054-2020-11-6-628-635
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The influence of non-magnetic defects of different sizes on the stability and anchoring of skyrmions in race track memory devices has been investigated. The energy surface of the system was built on the basis of the generalized Heisenberg model, which includes exchange, Dzyaloshinskii-Moriya interaction, anisotropy, and an external magnetic field. Minima and saddle points on the energy surface are used to estimate quantitatively the stability and pinning effects for skyrmions. The activation energies for attachment and detachment of skyrmions from defects, collapse and nucleation of skyrmions on a nonmagnetic impurity on a track of finite width are calculated. The joint effect of defects and the proximity of sample boundaries on the stability and localization of skyrmions has been studied. It is shown that skyrmion race track memory can only work if the track width is much greater than four times the skyrmion radius, and the spatial size of defects that can pin a skyrmion is small compared to its own size. Otherwise, the skyrmion will annihilate instead of moving under the action of the spin-polarized current.
引用
收藏
页码:628 / 635
页数:8
相关论文
共 50 条
  • [1] Skyrmion racetrack memory with an antidot
    Kumar Behera, Aroop
    Murapaka, Chandrasekhar
    Mallick, Sougata
    Bhusan Singh, Braj
    Bedanta, Subhankar
    [J]. JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2021, 54 (02)
  • [2] Toward Write Optimization for Skyrmion Racetrack Memory by Skyrmion Repermutation
    Yang, Tsun-Yu
    Peng, Xiangjun
    Kang, Wang
    Yang, Ming-Chang
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (06) : 1769 - 1780
  • [3] Complementary Skyrmion Racetrack Memory With Voltage Manipulation
    Kang, Wang
    Zheng, Chentian
    Huang, Yangqi
    Zhang, Xichao
    Zhou, Yan
    Lv, Weifeng
    Zhao, Weisheng
    [J]. IEEE ELECTRON DEVICE LETTERS, 2016, 37 (07) : 924 - 927
  • [4] Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
    Zhang, Xichao
    Zhao, G. P.
    Fangohr, Hans
    Liu, J. Ping
    Xia, W. X.
    Xia, J.
    Morvan, F. J.
    [J]. SCIENTIFIC REPORTS, 2015, 5
  • [5] Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory
    Xichao Zhang
    G. P. Zhao
    Hans Fangohr
    J. Ping Liu
    W. X. Xia
    J. Xia
    F. J. Morvan
    [J]. Scientific Reports, 5
  • [6] Skyrmion Vault: Maximizing Skyrmion Lifespan for Enabling Low-Power Skyrmion Racetrack Memory
    Lu, Syue-Wei
    Chen, Shuo-Han
    Liang, Yu-Pei
    Chang, Yuan-Hao
    Wang, Kang
    Chen, Tseng-Yi
    Shih, Wei-Kuan
    [J]. 2023 28TH ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 2023, : 333 - 338
  • [7] Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory
    Kang, Wang
    Huang, Yangqi
    Zheng, Chentian
    Lv, Weifeng
    Lei, Na
    Zhang, Youguang
    Zhang, Xichao
    Zhou, Yan
    Zhao, Weisheng
    [J]. SCIENTIFIC REPORTS, 2016, 6
  • [8] Voltage Controlled Magnetic Skyrmion Motion for Racetrack Memory
    Wang Kang
    Yangqi Huang
    Chentian Zheng
    Weifeng Lv
    Na Lei
    Youguang Zhang
    Xichao Zhang
    Yan Zhou
    Weisheng Zhao
    [J]. Scientific Reports, 6
  • [9] A repulsive skyrmion chain as a guiding track for a racetrack memory
    Suess, D.
    Vogler, C.
    Bruckner, F.
    Heistracher, P.
    Abert, C.
    [J]. AIP ADVANCES, 2018, 8 (11):
  • [10] Skyrmion Racetrack Memory With Random Information Update/Deletion/Insertion
    Zhu, Daoqian
    Kang, Wang
    Li, Sai
    Huang, Yangqi
    Zhang, Xichao
    Zhou, Yan
    Zhao, Weisheng
    [J]. IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (01) : 87 - 95