Expression of the Medicago truncatula MtDof32 transcription factor regulates plant growth and enhances abiotic stress tolerances in transgenic Arabidopsis

被引:10
|
作者
Guo, Tao [1 ]
Wang, Shumin [2 ]
Zhang, Tiejun [1 ]
Xu, Lixin [1 ]
Li, Yinruizhi [1 ]
Chao, Yuehui [1 ]
Han, Liebao [1 ]
机构
[1] Beijing Forestry Univ, Coll Grassland Sci, Beijing 100083, Peoples R China
[2] Nanjing Agr Univ, Coll Agrograssland Sci, Nanjing 210095, Peoples R China
基金
中国国家自然科学基金;
关键词
Dof32; Medicago truncatula; Branch; Organ size; Abiotic stress response; FLOWERING-TIME; CIRCADIAN CLOCK; GENE-EXPRESSION; ORGAN SIZE; AUXIN; PHYTOCHROME; PROTEINS; FAMILY; PROLIFERATION; MAIZE;
D O I
10.1016/j.envexpbot.2020.104339
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
The DNA-binding one Zinc Finger (Dof) protein is an important transcription factor unique in plants, which plays important roles in regulating plant biological rhythm, flowering and nitrogenium storage. In this study, the MtDof32 gene was isolated from Medicago truncatula and the gene function was characterized in trangenic plants. The expression pattern exhibited that MtDof32 gene might be involved in stress responses and tolerances. Transgenic Arabidopsis thaliana plants were obtained by agrobacterium tumefaciens-mediated transformation. Compared with wild-type plants, the MtDof32 transgenic Arabidopsis showed reduced total branch number by 40 % on average, and increased rosettes number, the number gap was growing with plant growth. These phenotypes have never been found in previous studies. In addition, transgenic plants also showed delayed flowering, enlarged flower and leaf organs, and enhanced tolerances to osmotic and salt stresses. The expression level of some branching and flowering regulation genes in transgenic plants changed significantly, compared to those of wild-type plants. Taken together, these results demonstrated novel functions of MtDof32 in reducing branch number and increasing rosettes number, which is beneficial for further studies about the plant growth and development regulation network mediated by Dof protein family.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants
    Shi-Qing Gao
    Ming Chen
    Zhao-Shi Xu
    Chang-Ping Zhao
    Liancheng Li
    Hui-jun Xu
    Yi-miao Tang
    Xin Zhao
    You-Zhi Ma
    Plant Molecular Biology, 2011, 75 : 537 - 553
  • [2] The soybean GmbZIP1 transcription factor enhances multiple abiotic stress tolerances in transgenic plants
    Gao, Shi-Qing
    Chen, Ming
    Xu, Zhao-Shi
    Zhao, Chang-Ping
    Li, Liancheng
    Xu, Hui-jun
    Tang, Yi-miao
    Zhao, Xin
    Ma, You-Zhi
    PLANT MOLECULAR BIOLOGY, 2011, 75 (06) : 537 - 553
  • [3] The Novel Wheat Transcription Factor TaNAC47 Enhances Multiple Abiotic Stress Tolerances in Transgenic Plants
    Zhang, Lina
    Zhang, Lichao
    Xia, Chuan
    Zhao, Guangyao
    Jia, Jizeng
    Kong, Xiuying
    FRONTIERS IN PLANT SCIENCE, 2016, 6
  • [4] A novel wheat bZIP transcription factor, TabZIP60, confers multiple abiotic stress tolerances in transgenic Arabidopsis
    Zhang, Lina
    Zhang, Lichao
    Xia, Chuan
    Zhao, Guangyao
    Liu, Ji
    Jia, Jizeng
    Kong, Xiuying
    PHYSIOLOGIA PLANTARUM, 2015, 153 (04) : 538 - 554
  • [5] The Miscanthus NAC transcription factor MlNAC9 enhances abiotic stress tolerance in transgenic Arabidopsis
    Zhao, Xun
    Yang, Xuanwen
    Pei, Shengqiang
    He, Guo
    Wang, Xiaoyu
    Tang, Qi
    Jia, Chunlin
    Lu, Ying
    Hu, Ruibo
    Zhou, Gongke
    GENE, 2016, 586 (01) : 158 - 169
  • [6] Heterologous expression of the maize transcription factor ZmbHLH36 enhances abiotic stress tolerance in Arabidopsis
    Dai, Zhenggang
    Zhao, Keyong
    Zheng, Dengyu
    Guo, Siyu
    Zou, Huawen
    Wu, Zhongyi
    Zhang, Chun
    ABIOTECH, 2024, 5 (03) : 339 - 350
  • [7] TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana
    Q. Xu
    W. J. Feng
    H. R. Peng
    Z. F. Ni
    Q. X. Sun
    Cereal Research Communications, 2014, 42 : 47 - 57
  • [8] TaWRKY71, a WRKY Transcription Factor from Wheat, Enhances Tolerance to Abiotic Stress in Transgenic Arabidopsis thaliana
    Xu, Q.
    Feng, W. J.
    Peng, H. R.
    Ni, Z. F.
    Sun, Q. X.
    CEREAL RESEARCH COMMUNICATIONS, 2014, 42 (01) : 48 - +
  • [9] Picea wilsonii NAC Transcription Factor PwNAC30 Negatively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Liang, Ke-hao
    Wang, Ai-bin
    Yuan, Yi-hang
    Miao, Ya-hui
    Zhang, Ling-yun
    PLANT MOLECULAR BIOLOGY REPORTER, 2020, 38 (04) : 554 - 571
  • [10] Picea wilsonii NAC Transcription Factor PwNAC30 Negatively Regulates Abiotic Stress Tolerance in Transgenic Arabidopsis
    Ke-hao Liang
    Ai-bin Wang
    Yi-hang Yuan
    Ya-hui Miao
    Ling-yun Zhang
    Plant Molecular Biology Reporter, 2020, 38 : 554 - 571