Full time-dependent Hartree-Fock solution of large N Gross-Neveu models

被引:17
|
作者
Dunne, Gerald V. [1 ,2 ,3 ]
Thies, Michael [4 ]
机构
[1] Univ Adelaide, ARC Ctr Excellence Particle Phys Terascale, Adelaide, SA 5005, Australia
[2] Univ Adelaide, CSSM, Sch Chem & Phys, Adelaide, SA 5005, Australia
[3] Univ Connecticut, Dept Phys, Storrs, CT 06269 USA
[4] Univ Erlangen Nurnberg, Inst Theoret Phys, D-91058 Erlangen, Germany
来源
PHYSICAL REVIEW D | 2014年 / 89卷 / 02期
关键词
SEMICLASSICAL BOUND-STATES; CONDENSED MATTER; SOLITON LATTICE; SUPERCONDUCTIVITY; SYSTEMS; INTEGRABILITY;
D O I
10.1103/PhysRevD.89.025008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We find the general solution to the time-dependent Hartree-Fock problem for scattering solutions of the Gross-Neveu models, with both discrete (GN(2)) and continuous (NJL(2)) chiral symmetry. We find new multibreather solutions both for the GN(2) model, generalizing the Dashen-Hasslacher-Neveu breather solution, and also new twisted breathers for the NJL(2) model. These solutions satisfy the full time-dependent Hartree-Fock consistency conditions, and only in the special cases of GN(2) kink scattering do these conditions reduce to the integrable Sinh-Gordon equation. We also show that all baryons and breathers are composed of constituent twisted kinks of the NJL(2) model. Our solution depends crucially on a general class of transparent, time-dependent Dirac potentials found recently by algebraic methods.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Time-Dependent Hartree-Fock Solution of Gross-Neveu Models: Twisted-Kink Constituents of Baryons and Breathers
    Dunne, Gerald V.
    Thies, Michael
    PHYSICAL REVIEW LETTERS, 2013, 111 (12)
  • [2] THE GENERALIZED HARTREE-FOCK METHOD IN THE GROSS-NEVEU MODEL
    YAMADA, H
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1994, 9 (32): : 5651 - 5672
  • [3] Phase structure of the massive chiral Gross-Neveu model from the Hartree-Fock approach
    Boehmer, Christian
    Fritsch, Ulf
    Kraus, Sebastian
    Thies, Michael
    PHYSICAL REVIEW D, 2008, 78 (06):
  • [4] HARTREE-FOCK TIME-DEPENDENT PROBLEM
    BOVE, A
    DAPRATO, G
    FANO, G
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1976, 49 (01) : 25 - 33
  • [5] TIME-DEPENDENT HARTREE-FOCK EQUATIONS
    SMET, F
    TILLIEU, J
    VANGROENENDAEL, A
    INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 1980, 17 (03) : 531 - 547
  • [6] Time-dependent projected Hartree-Fock
    Tsuchimochi, Takashi
    Van Voorhisa, Troy
    JOURNAL OF CHEMICAL PHYSICS, 2015, 142 (12):
  • [7] TIME-DEPENDENT HARTREE-FOCK AND BEYOND
    GOEKE, K
    CUSSON, RY
    GRUMMER, F
    REINHARD, PG
    REINHARDT, H
    SUPPLEMENT OF THE PROGRESS OF THEORETICAL PHYSICS, 1983, (74-7): : 33 - 65
  • [8] TIME-DEPENDENT HARTREE-FOCK THEORY AND NUCLEAR VIBRATIONAL MODELS
    ROWE, DJ
    NUCLEAR PHYSICS, 1966, 85 (02): : 365 - &
  • [9] SEMICLASSICAL APPROXIMATION TO TIME-DEPENDENT HARTREE-FOCK
    DWORZECKA, M
    POGGIOLI, R
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1976, 21 (01): : 13 - 13
  • [10] ADIABATICITY OF TIME-DEPENDENT HARTREE-FOCK SOLUTIONS
    BONCHE, P
    QUENTIN, P
    PHYSICAL REVIEW C, 1978, 18 (04): : 1891 - 1905