Optical Properties of Lithium Niobate and Lithium Tantalate Crystals with Impurities and Defects

被引:10
|
作者
Gorelik, V. S. [1 ,2 ]
Sidorov, N. V. [3 ]
Vodchits, A. I. [4 ]
机构
[1] Russian Acad Sci, Lebedev Phys Inst, Leninskiy pr 53, Moscow 119991, Russia
[2] Bauman Moscow State Tech Univ, Ul 2 Ya Baumanskaya 5-1, Moscow 105005, Russia
[3] Russian Acad Sci, Kola Sci Ctr, Tananaev Inst Chem & Technol Rare Elements & Mine, Acad Town 26a, Apatity 184209, Russia
[4] Natl Acad Sci Belarus, Stepanov Inst Phys, Pr Nezavisimosti 68, Minsk 220072, BELARUS
关键词
DIELECTRIC-PROPERTIES; RAMAN-SCATTERING; NONLINEAR OPTICS; LIGHT-SCATTERING; SINGLE-CRYSTAL; LINBO3; TEMPERATURE; PHONONS; DISPERSION; POINT;
D O I
10.3103/S1541308X17010022
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The photoinduced and Raman scattering in lithium niobate and lithium tantalate crystals with impurities and defects have been studied. An exciting laser beam propagated either along the ferroelectric Z axis or perpendicular to it. The conditions for exciting transverse and longitudinal polar optical modes in Raman spectra are established. The regularities of the excitation of Raman spectra in several polarization geometries (X(ZZ)Y, Z(XX, YY)Z, Z(XX, YY)(Z) over bar, X(ZX)Y, X(ZX)(X) over tilde and X(ZX)X) have been investigated. Additional (extra) spectral lines are interpreted as a manifestation of a biphonon enhanced by the Fermi resonance and the result of violation of selection rules for pseudoscalar modes of the A(2) type due to the reduction of the point symmetry group caused by the presence of impurities and defects in real crystals. The conditions for exciting coherent longitudinal and transverse modes in lithium niobate and lithium tantalate single crystals upon stimulated Raman scattering are analyzed. The temperature evolution of the spectra recorded in the X(ZZ)Y geometry near the ferroelectric phase transition point is explained based on the concept of effective soft mode and analysis of the isofrequency opalescence effect. Strong photoluminescence is found in copper-doped lithium niobate crystals.
引用
收藏
页码:10 / 19
页数:10
相关论文
共 50 条
  • [1] Optical properties of lithium niobate and lithium tantalate crystals with impurities and defects
    V. S. Gorelik
    N. V. Sidorov
    A. I. Vodchits
    [J]. Physics of Wave Phenomena, 2017, 25 : 10 - 19
  • [2] On the nature of anisotropy of optical properties of lithium niobate and lithium tantalate crystals
    Berezhnoi, AA
    [J]. OPTIKA I SPEKTROSKOPIYA, 1997, 82 (01): : 93 - 104
  • [3] Effect of Nanoscale Defects on the Physical Properties of Lithium Niobate and Lithium Tantalate Crystals
    Golenishchev-Kutuzov A.V.
    Golenishchev-Kutuzov V.A.
    Kalimullin R.I.
    Semennikov A.V.
    [J]. Bulletin of the Russian Academy of Sciences: Physics, 2018, 82 (5) : 558 - 560
  • [4] Optical and Electrooptic Properties of Potassium Lithium Tantalate Niobate Single Crystals
    Li, Yang
    Li, Jun
    Zhou, Zhongxiang
    Bhalla, Amar
    Guo, Ruyan
    [J]. PHOTONIC FIBER AND CRYSTAL DEVICES: ADVANCES IN MATERIALS AND INNOVATIONS IN DEVICE APPLICATIONS V, 2011, 8120
  • [5] Photoinduced Properties of Lithium Niobate, Tantalate, and Iodate Crystals
    Ya. O. Shablovskii
    [J]. Inorganic Materials, 2005, 41 : 516 - 523
  • [6] Photoinduced properties of lithium niobate, tantalate, and iodate crystals
    Shablovskii, YO
    [J]. INORGANIC MATERIALS, 2005, 41 (05) : 516 - 523
  • [7] Dielectric properties of lithium niobate-tantalate crystals
    Xue, D
    Betzler, K
    Hesse, H
    [J]. SOLID STATE COMMUNICATIONS, 2000, 115 (11) : 581 - 585
  • [8] Domain Nanotechnology in Lithium Niobate and Lithium Tantalate Crystals
    Shur, V. Ya.
    [J]. FERROELECTRICS, 2010, 399 : 97 - 106
  • [9] Optical properties of lithium niobate crystals
    Syuy, A. V.
    Sidorov, N. V.
    Palatnikov, M. N.
    Teplyakova, N. A.
    Shtarev, D. S.
    Prokopiv, N. N.
    [J]. OPTIK, 2018, 156 : 239 - 246
  • [10] THERMAL EXPANSION OF LITHIUM TANTALATE AND LITHIUM NIOBATE SINGLE CRYSTALS
    KIM, YS
    SMITH, RT
    [J]. JOURNAL OF APPLIED PHYSICS, 1969, 40 (11) : 4637 - &