Spatio-temporal saliency detection using objectness measure

被引:3
|
作者
Brahim, Khawla [1 ]
Kalboussi, Rahma [1 ]
Abdellaoui, Mehrez [1 ]
Douik, Ali [1 ]
机构
[1] Univ Sousse, Natl Engn Sch Sousse, Networked Objects Control & Commun Syst Lab, Sousse, Tunisia
关键词
Spatio-temporal saliency detection; Visual attention; Motion distinctiveness; Saliency map; INTEGRATION;
D O I
10.1007/s11760-019-01445-0
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Spatio-temporal saliency detection has gradually gained much attention in various computer vision applications such as intelligent video advertising and visual tracking. In this paper, we present a new approach based on the spatial and temporal information of the input video frame which aims to find the similar salient objects is proposed. First, objectness measure is performed to highlight the regions that may contain the object of interest. Then, for each candidate, newly proposed motion distinctiveness cues and static features including contrast measure and spatial distance are used to compute saliency maps. Experiments over two widely benchmark datasets, using several evaluation metrics such as mean absolute error, F score and area under the ROC curve measures, show the efficiency of our saliency approach compared to recent state-of-the-art methods. More interestingly, our attended scenes locations are coherent with the ground truth video frames. On SegTrack v2 and Fukuchi datasets, our proposed method yielded an overall mean absolute error, respectively, of 0.0669 and 0.0794. These results indicate the potential of our proposed framework in detecting motion salient objects.
引用
收藏
页码:1055 / 1062
页数:8
相关论文
共 50 条
  • [1] Spatio-temporal saliency detection using objectness measure
    Khawla Brahim
    Rahma Kalboussi
    Mehrez Abdellaoui
    Ali Douik
    [J]. Signal, Image and Video Processing, 2019, 13 : 1055 - 1062
  • [2] Pothole detection using spatio-temporal saliency
    Jang, Dong-Won
    Park, Rae-Hong
    [J]. IET INTELLIGENT TRANSPORT SYSTEMS, 2016, 10 (09) : 605 - 612
  • [3] On Spatio-Temporal Saliency Detection in Videos using Multilinear PCA
    Sidibe, Desire
    Rastgoo, Mojdeh
    Meriaudeau, Fabrice
    [J]. 2016 23RD INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2016, : 1876 - 1880
  • [4] Object motion detection using information theoretic spatio-temporal saliency
    Liu, Chang
    Yuen, Pong C.
    Qiu, Guoping
    [J]. PATTERN RECOGNITION, 2009, 42 (11) : 2897 - 2906
  • [5] MOTION DETECTION BASED ON SPATIO-TEMPORAL SALIENCY PERCEPTION
    Gang-Yan
    Ming-Yu
    Cuihong-Xue
    [J]. PROCEEDINGS OF 2013 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS (ICMLC), VOLS 1-4, 2013, : 948 - 951
  • [6] Regularized Feature Reconstruction for Spatio-temporal Saliency Detection
    Ren, Zhixiang
    Gao, Shenghua
    Chia, Liang-Tien
    Rajan, Deepu
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2013, 22 (08) : 3120 - 3132
  • [7] Spatio-temporal saliency detection using phase spectrum of Quaternion Fourier Transform
    Guo, Chenlei
    Ma, Qi
    Zhang, Liming
    [J]. 2008 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-12, 2008, : 2908 - 2915
  • [8] Spatio-Temporal Saliency Detection in Dynamic Scenes using Local Binary Patterns
    Muddamsetty, Satya M.
    Sidibe, Desire
    Tremeau, Alain
    Meriaudeau, Fabrice
    [J]. 2014 22ND INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2014, : 2353 - 2358
  • [9] Spatio-Temporal Saliency Networks for Dynamic Saliency Prediction
    Bak, Cagdas
    Kocak, Aysun
    Erdem, Erkut
    Erdem, Aykut
    [J]. IEEE TRANSACTIONS ON MULTIMEDIA, 2018, 20 (07) : 1688 - 1698
  • [10] Spatio-Temporal Saliency for Action Similarity
    Burghouts, G. J.
    van den Broek, S. P.
    ten Hove, R. J. M.
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS (CVPRW), 2013, : 257 - 262