On minimal rank over finite fields

被引:0
|
作者
Ding, Guoli [1 ]
Kotlov, Andrei [1 ]
机构
[1] Louisiana State Univ, Dept Math, Baton Rouge, LA 70803 USA
来源
关键词
minimal rank; forbidden induced subgraph; critical graph;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F be a field. Given a simple graph G on n vertices, its minimal rank ( with respect to F) is the minimum rank of a symmetric n x n F-valued matrix whose off-diagonal zeroes are the same as in the adjacency matrix of G. If F is finite, then for every k, it is shown that the set of graphs of minimal rank at most k is characterized by finitely many forbidden induced subgraphs, each on at most (|F|(k)/2 + 1)(2) vertices. These findings also hold in a more general context.
引用
收藏
页码:210 / 214
页数:5
相关论文
共 50 条
  • [1] On the minimal rank in non-reflexive operator spaces over finite fields
    Pazzis, Clement de Seguins
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2014, 462 : 126 - 132
  • [2] Rank Minimization over Finite Fields
    Tan, Vincent Y. F.
    Balzano, Laura
    Draper, Stark C.
    [J]. 2011 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY PROCEEDINGS (ISIT), 2011, : 1195 - 1199
  • [3] Algebras of minimal rank over arbitrary fields
    Bläser, M
    [J]. STACS 2003, PROCEEDINGS, 2003, 2607 : 403 - 414
  • [4] Algebras of minimal rank over perfect fields
    Bläser, M
    [J]. 17TH ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2002, : 113 - 122
  • [5] THE MINIMUM RANK PROBLEM OVER FINITE FIELDS
    Grout, Jason
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2010, 20 : 691 - 716
  • [6] On the minimum rank of a graph over finite fields
    Friedland, Shmuel
    Loewy, Raphael
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1710 - 1720
  • [7] On the rank of Hankel matrices over finite fields
    Dwivedi, Omesh Dhar
    Grinberg, Darij
    [J]. LINEAR ALGEBRA AND ITS APPLICATIONS, 2022, 641 : 156 - 181
  • [8] Graphs whose minimal rank is two: The finite fields case
    Barrett, W
    Van der Holst, H
    Loewy, R
    [J]. ELECTRONIC JOURNAL OF LINEAR ALGEBRA, 2005, 14 : 32 - 42
  • [9] Minimal linear codes over finite fields
    Heng, Ziling
    Ding, Cunsheng
    Zhou, Zhengchun
    [J]. FINITE FIELDS AND THEIR APPLICATIONS, 2018, 54 : 176 - 196
  • [10] Local minimal polynomials over finite fields
    AcostaDeOrozco, MT
    GomezCalderon, J
    [J]. FIBONACCI QUARTERLY, 1996, 34 (02): : 139 - 143