Label propagation through minimax paths for scalable semi-supervised learning

被引:19
|
作者
Kim, Kye-Hyeon [1 ]
Choi, Seungjin [1 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Comp Sci & Engn, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
Label propagation; Minimax path; Semi-supervised learning; GRAPH;
D O I
10.1016/j.patrec.2014.02.020
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Semi-supervised learning (SSL) is attractive for labeling a large amount of data. Motivated from cluster assumption, we present a path-based SSL framework for efficient large-scale SSL, propagating labels through only a few important paths between labeled nodes and unlabeled nodes. From the framework, minimax paths emerge as a minimal set of important paths in a graph, leading us to a novel algorithm, minimax label propagation. With an appropriate stopping criterion, learning time is (1) linear with respect to the number of nodes in a graph and (2) independent of the number of classes. Experimental results show the superiority of our method over existing SSL methods, especially on large-scale data with many classes. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:17 / 25
页数:9
相关论文
共 50 条
  • [1] Semi-Supervised Learning Through Label Propagation on Geodesics
    Fan, Mingyu
    Zhang, Xiaoqin
    Du, Liang
    Chen, Liang
    Tao, Dacheng
    [J]. IEEE TRANSACTIONS ON CYBERNETICS, 2018, 48 (05) : 1486 - 1499
  • [2] Semi-supervised Learning Based on Label Propagation through Submanifold
    Hu, Jiani
    Deng, Weihong
    Guo, Jun
    [J]. ADVANCES IN NEURAL NETWORKS - ISNN 2009, PT 1, PROCEEDINGS, 2009, 5551 : 617 - 623
  • [3] note on label propagation for semi-supervised learning
    Bodo, Zalan
    Csato, Lehel
    [J]. ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2015, 7 (01) : 18 - 30
  • [4] Label Propagation for Deep Semi-supervised Learning
    Iscen, Ahmet
    Tolias, Giorgos
    Avrithis, Yannis
    Chum, Ondrej
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 5065 - 5074
  • [5] Logistic Label Propagation for Semi-supervised Learning
    Watanabe, Kenji
    Kobayashi, Takumi
    Otsu, Nobuyuki
    [J]. NEURAL INFORMATION PROCESSING: THEORY AND ALGORITHMS, PT I, 2010, 6443 : 462 - 469
  • [6] Cyclic label propagation for graph semi-supervised learning
    Li, Zhao
    Liu, Yixin
    Zhang, Zhen
    Pan, Shirui
    Gao, Jianliang
    Bu, Jiajun
    [J]. WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2022, 25 (02): : 703 - 721
  • [7] Cyclic label propagation for graph semi-supervised learning
    Zhao Li
    Yixin Liu
    Zhen Zhang
    Shirui Pan
    Jianliang Gao
    Jiajun Bu
    [J]. World Wide Web, 2022, 25 : 703 - 721
  • [8] Label Correlation Propagation for Semi-supervised Multi-label Learning
    Ghosh, Aritra
    Sekhar, C. Chandra
    [J]. PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2017, 2017, 10597 : 52 - 60
  • [9] Deep Semi-supervised Metric Learning with Mixed Label Propagation
    Zhuang, Furen
    Moulin, Pierre
    [J]. 2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 3429 - 3438
  • [10] Semi-supervised dictionary learning with label propagation for image classification
    Lin Chen
    Meng Yang
    [J]. Computational Visual Media, 2017, 3 (01) : 83 - 94