Deep Convolutional Neural Network Classifier of Pulse Repetition Interval Modulations

被引:2
|
作者
Hekrdla, Miroslav [1 ]
Hermanek, Antonin [1 ]
机构
[1] ERA AS, Pardubice, Czech Republic
关键词
D O I
10.1109/RADAR41533.2019.171270
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Electronic support systems obtain valuable information about a pulsed radar through the analysis of its Pulse Repetition Intervals (PRIs). PRI signal is very agile and undergone complex distortion which makes its analysis non-trivial. In this paper, a Convolutional Neural Network (CNN) is proposed for automatic PRI classification. We show that standard min-max and zero-mean unit-variance data normalization is not suitable. We propose a novel normalization providing faster training and lower classification error. We show that a recently proposed CNN scheme is prone to miss-classify higher cardinality stagger so we enhance the scheme by deeper layers, batch normalization and dropout regularization.
引用
收藏
页码:13 / 16
页数:4
相关论文
共 50 条
  • [1] Classification of Pulse Repetition Interval Modulations Using Neural Networks
    Ha P K Nguyen
    Ha Q Nguyen
    [J]. 2018 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI), 2018, : 1739 - 1743
  • [2] Deep Convolutional Generalized Classifier Neural Network
    Sarigul, Mehmet
    Ozyildirim, B. Melis
    Avci, Mutlu
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (03) : 2839 - 2854
  • [3] Deep Convolutional Generalized Classifier Neural Network
    Mehmet Sarigul
    B. Melis Ozyildirim
    Mutlu Avci
    [J]. Neural Processing Letters, 2020, 51 : 2839 - 2854
  • [4] Toward Convolutional Neural Networks on Pulse Repetition Interval Modulation Recognition
    Li, Xueqiong
    Huang, Zhitao
    Wang, Fenghua
    Wang, Xiang
    Liu, Tianrui
    [J]. IEEE COMMUNICATIONS LETTERS, 2018, 22 (11) : 2286 - 2289
  • [5] Automatic recognition of pulse repetition interval modulation using temporal convolutional network
    Dadgarnia, Abolfazl
    Sadeghi, Mohammad Taghi
    [J]. IET SIGNAL PROCESSING, 2021, 15 (09) : 633 - 648
  • [6] A New Method for Detection of complex Pulse Repetition Interval Modulations
    Mahmoud, Keshavarzi
    Mansour, Pezeshk Amir
    Forouhar, Farzaneh
    [J]. PROCEEDINGS OF 2012 IEEE 11TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING (ICSP) VOLS 1-3, 2012, : 1705 - 1709
  • [7] A Robust Method for Recognition of Complicated Pulse Repetition Interval Modulations
    Keshavarzi, Mahmoud
    Pezeshk, Amir Mansour
    Farzaneh, Forouhar
    Amiri, Delaram
    [J]. IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2013, E96A (11) : 2306 - 2310
  • [8] Deep Convolutional Neural Network Classifier for Handwritten Devanagari Character Recognition
    Singh, Pratibha
    Verma, Ajay
    Chaudhari, Narendra S.
    [J]. INFORMATION SYSTEMS DESIGN AND INTELLIGENT APPLICATIONS, VOL 2, INDIA 2016, 2016, 434 : 551 - 561
  • [9] Deep Learning for Pulse Repetition Interval Classification
    Nguyen, Ha P. K.
    Nguyen, Ha Q.
    Ngo, Dat T.
    [J]. ICPRAM: PROCEEDINGS OF THE 8TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION APPLICATIONS AND METHODS, 2019, : 313 - 319
  • [10] Deep Convolutional Neural Network with Multi-Task Learning Scheme for Modulations Recognition
    Mossad, Omar S.
    ElNainay, Mustafa
    Torki, Marwan
    [J]. 2019 15TH INTERNATIONAL WIRELESS COMMUNICATIONS & MOBILE COMPUTING CONFERENCE (IWCMC), 2019, : 1644 - 1649