Geospatial Object Detection via Deconvolutional Region Proposal Network

被引:28
|
作者
Wang, Chen [1 ]
Shi, Jun [1 ]
Yang, Xiaqing [1 ]
Zhou, Yuanyuan [1 ]
Wei, Shunjun [1 ]
Li, Liang [1 ]
Zhang, Xiaoling [1 ]
机构
[1] Univ Elect Sci & Technol China, Sch Informat & Commun Engn, Chengdu 611731, Sichuan, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
Anchor free; deconvolutional network; high spatial resolution (HSR) remote sensing imagery; object detection; precise region proposal; CLASSIFICATION; SCALE;
D O I
10.1109/JSTARS.2019.2919382
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In the problem of geospatial object detection, the quality and amount of reference boxes significantly impact the detection performance and prediction speed of object detection networks. Nowadays, most of the popular detection methods adopt the anchor mechanism to generate reference boxes. This paper proposed an anchor-free and sliding-window-free deconvolutional region proposal network and constructed a two-stage deconvolutional object detection network. Instead of using an anchor mechanism, we proposed to use a deconvolutional neural network followed by a connected region generation module to generate reference boxes. The comparison experiments and quantitative analysis with NWPU VHR-10 dataset demonstrate that DeRPN can vastly reduce the number of reference boxes and improve the precision of the reference box coordinates. The experiments also suggest that our proposed two-stage object detection network can not only obtain the nearly state-of-the-art detection results but also achieve the prediction speed close to that of the one-stage detection network.
引用
收藏
页码:3014 / 3027
页数:14
相关论文
共 50 条
  • [1] Weakly Supervised Region Proposal Network and Object Detection
    Tang, Peng
    Wang, Xinggang
    Wang, Angtian
    Yan, Yongluan
    Liu, Wenyu
    Huang, Junzhou
    Yuille, Alan
    [J]. COMPUTER VISION - ECCV 2018, PT XI, 2018, 11215 : 370 - 386
  • [2] Label-efficient object detection via region proposal network pre-training
    Dong, Nanqing
    Ericsson, Linus
    Yang, Yongxin
    Leonardis, Ales
    Mcdonagh, Steven
    [J]. NEUROCOMPUTING, 2024, 577
  • [3] Hierarchical objectness network for region proposal generation and object detection
    Wang, Juan
    Tao, Xiaoming
    Xu, Mai
    Duan, Yiping
    Lu, Jianhua
    [J]. PATTERN RECOGNITION, 2018, 83 : 260 - 272
  • [4] REGION PROPOSAL RANKING VIA FUSION FEATURE FOR OBJECT DETECTION
    Li, Xi
    Ma, Huimin
    Wang, Xiang
    [J]. 2018 25TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2018, : 1298 - 1302
  • [5] SODNet: small object detection using deconvolutional neural network
    Zhang, Xinpeng
    Wu, Jigang
    Peng, Zhihao
    Meng, Min
    [J]. IET IMAGE PROCESSING, 2020, 14 (08) : 1662 - 1669
  • [6] KL-DIVERGENCE-BASED REGION PROPOSAL NETWORK FOR OBJECT DETECTION
    Seo, Geonseok
    Yoo, Jaeyoung
    Choi, Jaeseok
    Kwak, Nojun
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 2001 - 2005
  • [7] HIERARCHICAL REGION PROPOSAL REFINEMENT NETWORK FOR WEAKLY SUPERVISED OBJECT DETECTION
    Zhang, Ming
    Liu, Shuaicheng
    Zeng, Bing
    [J]. 2021 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2021, : 669 - 673
  • [8] UFO RPN: A Region Proposal Network for Ultra Fast Object Detection
    Li, Wenkai
    Song, Andy
    [J]. AI 2021: ADVANCES IN ARTIFICIAL INTELLIGENCE, 2022, 13151 : 619 - 631
  • [9] RRPN: RADAR REGION PROPOSAL NETWORK FOR OBJECT DETECTION IN AUTONOMOUS VEHICLES
    Nabati, Ramin
    Qi, Hairong
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 3093 - 3097
  • [10] Learning Deconvolutional Network for Object Tracking
    Lu, Xiankai
    Hu, Hong
    Fang, Tao
    Zhang, Huanlong
    [J]. IEEE ACCESS, 2018, 6 : 18031 - 18040