Corrosion rate of high CO2 pressure pipeline steel for carbon capture transport and storage

被引:0
|
作者
Cabrini, M. [1 ]
Lorenzi, S. [1 ]
Pastore, T. [1 ]
Radaelli, M. [2 ]
机构
[1] Univ Bergamo, Dalmine, BG, Italy
[2] RSE, Milan, Italy
来源
METALLURGIA ITALIANA | 2014年 / 06期
关键词
Corrosion; Carbon steel; Scale formation; Supercritical CO2; CO2 capture transport and storage (CCTS); DIOXIDE CORROSION; OIL; BEHAVIOR;
D O I
暂无
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
The paper deals with the effect of pressure, temperature and time on corrosion rate of pipeline steels in CO2 saturated water and in humid saturated CO2 gas in the range from 25 to 60 C and pressure from 20 to 145 bar, up to 400 hours of exposure. The results of weight loss tests show very high rates in the aqueous phase, one or two order of magnitude higher than the values obtained in CO2 saturated with water, but remaining in any case much lower than values extrapolated by De Waard and Milliams model at high partial pressure. Depending on temperature and pressure, cementite and iron carbonate scales can grow on metallic surface reducing corrosion rate. SEM and metallographic analysis evidenced the evolution of scale from defective cementite-based layer to protective compact carbonate scale.
引用
收藏
页码:21 / 26
页数:6
相关论文
共 50 条
  • [1] Internal corrosion of carbon steel pipelines for dense-phase CO2 transport in carbon capture and storage (CCS) - a review
    Barker, R.
    Hua, Y.
    Neville, A.
    [J]. INTERNATIONAL MATERIALS REVIEWS, 2017, 62 (01) : 1 - 31
  • [2] An engineering-economic model of pipeline transport of CO2 with application to carbon capture and storage
    McCoy, Sean T.
    Rubin, Edward S.
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2008, 2 (02) : 219 - 229
  • [3] Corrosion Electrochemical of CO2 Pipeline Steel
    Chen, Bing
    Ju, Rongbing
    Ruan, Yinghao
    [J]. PROCEEDINGS OF THE INTERNATIONAL FIELD EXPLORATION AND DEVELOPMENT CONFERENCE 2017, 2019, : 1460 - 1467
  • [4] Research on CO2 Corrosion and Protection in Carbon Capture, Utilization and Storage
    Zhang K.
    Sun Y.
    Wang C.-J.
    Ge H.-J.
    Zhu Y.-J.
    Wang H.-Y.
    [J]. Surface Technology, 2022, 51 (09): : 43 - 52
  • [5] Methodology for Phased Development of a Hypothetical Pipeline Network for CO2 Transport during Carbon Capture, Utilization, and Storage
    Jensen, Melanie D.
    Pei, Peng
    Snyder, Anthony C.
    Heebink, Loreal V.
    Botnen, Lisa S.
    Gorecki, Charles D.
    Steadman, Edward N.
    Harju, John A.
    [J]. ENERGY & FUELS, 2013, 27 (08) : 4175 - 4182
  • [6] Influence of SO2 on CO2 Transport by Pipeline for Carbon Capture and Storage Technology: Evaluation of CO2/SO2 Cocapture
    Gimeno, Beatriz
    Artal, Manuela
    Velasco, Inmaculada
    Fernandez, Javier
    Blanco, Sofia T.
    [J]. ENERGY & FUELS, 2018, 32 (08) : 8641 - 8657
  • [7] Formation mechanism of corrosion scales of carbon steel by CO2 corrosion under high temperature and high pressure
    Zhang, Guoan
    Lu, Minxu
    Wu, Yinshun
    [J]. Beijing Keji Daxue Xuebao/Journal of University of Science and Technology Beijing, 2007, 29 (12): : 1216 - 1221
  • [8] Materials challenges with CO2 transport and injection for carbon capture and storage
    Sonke, J.
    Bos, W. M.
    Paterson, S. J.
    [J]. INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2022, 114
  • [9] CORROSION TESTS IN HIGH PRESSURE CO2 FOR STORAGE WELLS
    Scapin, M.
    Sgorlon, S.
    Tolomio, M.
    Gabetta, G.
    [J]. METALLURGIA ITALIANA, 2008, (01): : 19 - 22
  • [10] CORROSION RATE OF CARBON STEEL FOR FLOWLINE AND PIPELINE AS TRANSMISSION PIPE IN NATURAL GAS PRODUCTION WITH CO2 CONTENT
    Rustandi, Andi
    Adyutatama, Muhammad
    Fadly, Enriko
    Subekti, Norman
    [J]. MAKARA JOURNAL OF TECHNOLOGY, 2012, 16 (01): : 57 - 62