Hardware-efficient bosonic quantum error-correcting codes based on symmetry operators

被引:23
|
作者
Niu, Murphy Yuezhen [1 ,2 ]
Chuang, Isaac L. [1 ,2 ,3 ]
Shapiro, Jeffrey H. [1 ,3 ]
机构
[1] MIT, Res Lab Elect, 77 Massachusetts Ave, Cambridge, MA 02139 USA
[2] MIT, Dept Phys, Cambridge, MA 02139 USA
[3] MIT, Dept Elect Engn & Comp Sci, Cambridge, MA 02139 USA
基金
美国国家科学基金会;
关键词
COMPUTATION; CONVERSION; SCHEME; STATES; LIMIT;
D O I
10.1103/PhysRevA.97.032323
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We establish a symmetry-operator framework for designing quantum error-correcting (QEC) codes based on fundamental properties of the underlying system dynamics. Based on this framework, we propose three hardware-efficient bosonic QEC codes that are suitable for chi((2))-interaction based quantum computation in multimode Fock bases: the chi((2)) parity-check code, the chi((2)) embedded error-correcting code, and the chi((2)) binomial code. All of these QEC codes detect photon-loss or photon-gain errors by means of photon-number parity measurements, and then correct them via chi((2)) Hamiltonian evolutions and linear-optics transformations. Our symmetry-operator framework provides a systematic procedure for finding QEC codes that are not stabilizer codes, and it enables convenient extension of a given encoding to higher-dimensional qudit bases. The chi((2)) binomial code is of special interest because, with m <= N identified from channel monitoring, it can correct m-photon-loss errors, or m-photon-gain errors, or (m - 1) th-order dephasing errors using logical qudits that are encoded in O(N) photons. In comparison, other bosonic QEC codes require O(N-2) photons to correct the same degree of bosonic errors. Such improved photon efficiency underscores the additional error-correction power that can be provided by channel monitoring. We develop quantum Hamming bounds for photon-loss errors in the code subspaces associated with the chi((2)) parity-check code and the chi((2)) embedded error-correcting code, and we prove that these codes saturate their respective bounds. Our chi((2)) QEC codes exhibit hardware efficiency in that they address the principal error mechanisms and exploit the available physical interactions of the underlying hardware, thus reducing the physical resources required for implementing their encoding, decoding, and error-correction operations, and their universal encoded-basis gate sets.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Hardware-efficient error-correcting codes for large nuclear spins
    Gross, Jonathan A.
    Godfrin, Clement
    Blais, Alexandre
    Dupont-Ferrier, Eva
    [J]. PHYSICAL REVIEW APPLIED, 2024, 22 (01):
  • [2] New Class of Quantum Error-Correcting Codes for a Bosonic Mode
    Michael, Marios H.
    Silveri, Matti
    Brierley, R. T.
    Albert, Victor V.
    Salmilehto, Juha
    Jiang, Liang
    Girvin, S. M.
    [J]. PHYSICAL REVIEW X, 2016, 6 (03):
  • [3] Quantum Error-Correcting Codes
    Grassl, Markus
    [J]. IT-INFORMATION TECHNOLOGY, 2006, 48 (06): : 354 - 358
  • [4] Entanglement increases the error-correcting ability of quantum error-correcting codes
    Lai, Ching-Yi
    Brun, Todd A.
    [J]. PHYSICAL REVIEW A, 2013, 88 (01):
  • [5] Quantum error-correcting codes and their geometries
    Ball, Simeon
    Centelles, Aina
    Huber, Felix
    [J]. ANNALES DE L INSTITUT HENRI POINCARE D, 2023, 10 (02): : 337 - 405
  • [6] Quantum error-correcting output codes
    Windridge, David
    Mengoni, Riccardo
    Nagarajan, Rajagopal
    [J]. INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2018, 16 (08)
  • [7] Theory of quantum error-correcting codes
    Knill, E
    Laflamme, R
    [J]. PHYSICAL REVIEW A, 1997, 55 (02): : 900 - 911
  • [8] Breeding quantum error-correcting codes
    Dong, Ying
    Hu, Dan
    Yu, Sixia
    [J]. PHYSICAL REVIEW A, 2010, 81 (02):
  • [9] Asymmetric quantum error-correcting codes
    Ioffe, Lev
    Mezard, Marc
    [J]. PHYSICAL REVIEW A, 2007, 75 (03):
  • [10] Foliated Quantum Error-Correcting Codes
    Bolt, A.
    Duclos-Cianci, G.
    Poulin, D.
    Stace, T. M.
    [J]. PHYSICAL REVIEW LETTERS, 2016, 117 (07)