EXISTENCE OF THREE SOLUTIONS FOR A DEGENERATE KIRCHHOFF-TYPE TRANSMISSION PROBLEM

被引:10
|
作者
Cammaroto, F. [1 ]
Vilasi, L. [1 ]
机构
[1] Univ Messina, Dept Math & Comp Sci, I-08166 Messina, Italy
关键词
Critical point; Degenerate Kirchhoff-type problem; Nonlinear transmission problem; p(x)-Laplacian;
D O I
10.1080/01630563.2014.895752
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we establish the existence of three weak solutions for a nonlinear transmission problem involving degenerate nonlocal coefficients of p(x)-Kirchhoff-type. Our approach is of variational nature; the weak formulation takes place in suitable variable exponent Sobolev spaces.
引用
收藏
页码:911 / 931
页数:21
相关论文
共 50 条
  • [1] EXISTENCE OF THREE SOLUTIONS FOR A KIRCHHOFF-TYPE BOUNDARY-VALUE PROBLEM
    Heidarkhani, Shapour
    Afrouzi, Ghasem Alizadeh
    O'Regan, Donal
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2011,
  • [2] THREE SOLUTIONS FOR A NEW KIRCHHOFF-TYPE PROBLEM
    Wang, Yue
    Wei, Qi-Ping
    Suo, Hong-Min
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2022, 14 (01):
  • [3] On a fractional degenerate Kirchhoff-type problem
    Bisci, Giovanni Molica
    Vilasi, Luca
    [J]. COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2017, 19 (01)
  • [4] Existence of positive solutions for kirchhoff-type problem in exterior domains
    Jia, Liqian
    Li, Xinfu
    Ma, Shiwang
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2023, 66 (01) : 182 - 217
  • [5] Existence and multiplicity of solutions for a class of fractional Kirchhoff-type problem
    Sun, Gaofeng
    Teng, Kaimin
    [J]. MATHEMATICAL COMMUNICATIONS, 2014, 19 (01) : 183 - 194
  • [6] GROUND-STATE SOLUTIONS TO A KIRCHHOFF-TYPE TRANSMISSION PROBLEM
    Li, Fuyi
    Zhang, Ying
    Zhu, Xiaoli
    Liang, Zhanping
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2021, 57 (01) : 201 - 219
  • [7] Existence and Multiplicity of Solutions for p(x)-Kirchhoff-Type Problem in RN
    Wei, Mei-Chun
    Tang, Chun-Lei
    [J]. BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2013, 36 (03) : 767 - 781
  • [8] Existence of ground state solutions for Kirchhoff-type problem with variable potential
    Hu, Die
    Tang, Xianhua
    Zhang, Qi
    [J]. APPLICABLE ANALYSIS, 2023, 102 (01) : 168 - 181
  • [9] EXISTENCE RESULTS FOR A KIRCHHOFF-TYPE PROBLEM WITH SINGULARITY
    Khodabakhshi, M.
    Vaezpour, S. M.
    Tavani, M. R. Heidari
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (01) : 351 - 362
  • [10] EXISTENCE OF INFINITELY MANY SOLUTIONS FOR DEGENERATE KIRCHHOFF-TYPE SCHRODINGER-CHOQUARD EQUATIONS
    Liang, Sihua
    Radulescu, Vicentiu D.
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2017,