A Workflow-Aided Internet of Things Paradigm with Intelligent Edge Computing

被引:11
|
作者
Qian, Yuwen [1 ]
Shi, Long [1 ]
Li, Jun [1 ]
Wang, Zhe [1 ]
Guan, Haibing [3 ]
Shu, Feng [2 ]
Poor, H. Vincent [4 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Elect & Opt Engn, Nanjing, Peoples R China
[2] Hainan Univ, Haikou, Hainan, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Elect Informat & Elect Engn, Shanghai, Peoples R China
[4] Princeton Univ, Princeton, NJ 08544 USA
来源
IEEE NETWORK | 2020年 / 34卷 / 06期
基金
中国国家自然科学基金; 美国国家科学基金会;
关键词
Internet of Things; Cloud computing; IEC; Engines; Task analysis; Servers; Resource management; MANAGEMENT;
D O I
10.1109/MNET.001.1900665
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
in this article, we propose a workflow-aided internet of things (WioT) paradigm with intelligent edge computing (iEC) to automate the execution of ioT applications with dependencies. Our design primarily targets at reducing the latency of the ioT systems from two perspectives. To reduce the latency from an application perspective, we develop a WioT paradigm to orchestrate various ioT applications in a programming way. To reduce the latency from a computation perspective, we propose a novel iEC framework to execute latency-sensitive ioT tasks at the edge network. We put forth a deep reinforcement learning algorithm to adaptively allocate the edge resources to the dynamic requests, aiming to provide the best quality of service for terminal users in real-time. Furthermore, we design a software platform to implement the proposed WioT with iEC. Experimental results demonstrate that WioT with iEC can significantly reduce the service latency and improve the network throughput, compared with the traditional cloud-based ioT systems.
引用
收藏
页码:92 / 99
页数:8
相关论文
共 50 条
  • [1] Intelligent Cooperative Edge Computing in Internet of Things
    Gong, Chao
    Lin, Fuhong
    Gong, Xiaowen
    Lu, Yueming
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2020, 7 (10) : 9372 - 9382
  • [2] Intelligent Mobile Edge Computing Networks for Internet of Things
    Chen, Liming
    Kuang, Xiaoyun
    Zhu, Fusheng
    Xia, Junjuan
    [J]. IEEE ACCESS, 2021, 9 : 95665 - 95674
  • [3] Intelligent Mobile Edge Computing With Pricing in Internet of Things
    Zhao, Zichao
    Zhou, Wen
    Deng, Dan
    Xia, Junjuan
    Fan, Liseng
    [J]. IEEE ACCESS, 2020, 8 : 37727 - 37735
  • [4] Internet of Music Things: an edge computing paradigm for opportunistic crowdsensing
    Roy, Samarjit
    Sarkar, Dhiman
    Hati, Sourav
    De, Debashis
    [J]. JOURNAL OF SUPERCOMPUTING, 2018, 74 (11): : 6069 - 6101
  • [5] Internet of Music Things: an edge computing paradigm for opportunistic crowdsensing
    Samarjit Roy
    Dhiman Sarkar
    Sourav Hati
    Debashis De
    [J]. The Journal of Supercomputing, 2018, 74 : 6069 - 6101
  • [6] Workflow Scheduling in Serverless Edge Computing for the Industrial Internet of Things: A Learning Approach
    Xie, Renchao
    Gu, Dier
    Tang, Qinqin
    Huang, Tao
    Yu, Fei Richard
    [J]. IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2023, 19 (07) : 8242 - 8252
  • [7] Edge Computing for Internet of Things
    Lee, Kevin
    Man, Ka Lok
    [J]. ELECTRONICS, 2022, 11 (08)
  • [8] EDGE COMPUTING FOR THE INTERNET OF THINGS
    Ren, Ju
    Pan, Yi
    Goscinski, Andrzej
    Beyah, Raheem A.
    [J]. IEEE NETWORK, 2018, 32 (01): : 6 - 7
  • [9] Edge computing in the Internet of Things
    Kang, Kyoung-Don
    Menasche, Daniel Sadoc
    Kucuk, Gurhan
    Zhu, Ting
    Yi, Ping
    [J]. INTERNATIONAL JOURNAL OF DISTRIBUTED SENSOR NETWORKS, 2017, 13 (09):
  • [10] Intelligent Reflecting Surface Assisted Mobile Edge Computing for Internet of Things
    Chu, Zheng
    Xiao, Pei
    Shojafar, Mohammad
    Mi, De
    Mao, Juquan
    Hao, Wanming
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2021, 10 (03) : 619 - 623