ASYMPTOTIC BEHAVIOR OF SOLUTIONS TO A DEGENERATE QUASILINEAR PARABOLIC EQUATION WITH A GRADIENT TERM

被引:0
|
作者
Li, Huilai [1 ]
Wang, Xinyue [2 ,3 ]
Nie, Yuanyuan [1 ]
He, Hong [1 ]
机构
[1] Jilin Univ, Sch Math, Changchun 130012, Peoples R China
[2] Jilin Univ, Expt Sch, Changchun 130021, Peoples R China
[3] Jilin Univ, Affiliated Middle Sch, Changchun 130021, Peoples R China
基金
中国国家自然科学基金;
关键词
Critical Fujita exponent; degenerate; quasilinear; gradient term; CRITICAL FUJITA EXPONENTS; LARGE TIME BEHAVIOR; BLOW-UP; NEUMANN PROBLEM; DOMAINS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This article concerns the asymptotic behavior of solutions to the Cauchy problem of a degenerate quasilinear parabolic equations with a gradient term. A blow-up theorem of Fujita type is established and the critical Fujita exponent is formulated by the spacial dimension and the behavior of the coefficient of the gradient term at infinity.
引用
收藏
页数:12
相关论文
共 50 条