Predicting mortgage default using convolutional neural networks

被引:78
|
作者
Kvamme, Havard [1 ]
Sellereite, Nikolai [2 ]
Aas, Kjersti [2 ]
Sjursen, Steffen [3 ]
机构
[1] Univ Oslo, Dept Math, Niels Henrik Abels Hus Moltke Moes Vei 35, N-0851 Oslo, Norway
[2] Norwegian Comp Ctr, Stat Anal Machine Learning & Image Anal, Gaustadalleen 23a, N-0373 Oslo, Norway
[3] DNB ASA, Grp Risk Modelling, Dronning Eufemias Gate 30, N-0191 Oslo, Norway
关键词
Consumer credit risk; Machine learning; Deep learning; Mortgage default model; Time series; CLASSIFICATION ALGORITHMS; CREDIT; RISK; PERFORMANCE; MODELS; AREA;
D O I
10.1016/j.eswa.2018.02.029
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We predict mortgage default by applying convolutional neural networks to consumer transaction data. For each consumer we have the balances of the checking account, savings account, and the credit card, in addition to the daily number of transactions on the checking account, and amount transferred into the checking account. With no other information about each consumer we are able to achieve a ROC AUC of 0.918 for the networks, and 0.926 for the networks in combination with a random forests classifier. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:207 / 217
页数:11
相关论文
共 50 条
  • [1] Predicting Sleeping Quality Using Convolutional Neural Networks
    Sathish, Vidya Rohini Konanur
    Woo, Wai Lok
    Ho, Edmond S. L.
    [J]. ADVANCES IN CYBERSECURITY, CYBERCRIMES, AND SMART EMERGING TECHNOLOGIES, 2023, 4 : 175 - 184
  • [2] Predicting Magnetization Directions Using Convolutional Neural Networks
    Nurindrawati, Felicia
    Sun, Jiajia
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2020, 125 (10)
  • [3] PREDICTING UNIVERSITY DROPOUT BY USING CONVOLUTIONAL NEURAL NETWORKS
    Mezzini, Mauro
    Bonavolonta, Gianmarco
    Agrusti, Francesco
    [J]. 13TH INTERNATIONAL TECHNOLOGY, EDUCATION AND DEVELOPMENT CONFERENCE (INTED2019), 2019, : 9155 - 9163
  • [4] On Predicting Geolocation of Tweets Using Convolutional Neural Networks
    Huang, Binxuan
    Carley, Kathleen M.
    [J]. SOCIAL, CULTURAL, AND BEHAVIORAL MODELING, 2017, 10354 : 281 - 291
  • [5] Predicting Eye Fixations using Convolutional Neural Networks
    Liu, Nian
    Han, Junwei
    Zhang, Dingwen
    Wen, Shifeng
    Liu, Tianming
    [J]. 2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2015, : 362 - 370
  • [6] Predicting Landslides Using Locally Aligned Convolutional Neural Networks
    Hajimoradlou, Ainaz
    Roberti, Gioachino
    Poole, David
    [J]. PROCEEDINGS OF THE TWENTY-NINTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2020, : 3342 - 3348
  • [7] Predicting pedestrian crosswalk behavior using Convolutional Neural Networks
    Liang, Eric
    Stamp, Mark
    [J]. TRAFFIC INJURY PREVENTION, 2023, 24 (04) : 338 - 343
  • [8] Predicting the effect of variants on splicing using Convolutional Neural Networks
    Thanapattheerakul, Thanyathorn
    Engchuan, Worrawat
    Chan, Jonathan H.
    [J]. PEERJ, 2020, 8
  • [9] Predicting the Next Process Event Using Convolutional Neural Networks
    Al-Jebrni, Abdulrhman
    Cai, Hongming
    Jiang, Lihong
    [J]. PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 332 - 338
  • [10] Predicting the Distress of Financial Intermediaries using Convolutional Neural Networks
    Taylor, Stacey
    Keselj, Vlado
    [J]. 2021 IEEE 23RD CONFERENCE ON BUSINESS INFORMATICS, CBI 2021, VOL 2, 2021, : 71 - 77