On the complexity of bicoloring clique hypergraphs of graphs

被引:46
|
作者
Kratochvíl, J
Tuza, Z
机构
[1] Charles Univ Prague, Dept Appl Math, CR-11800 Prague, Czech Republic
[2] Charles Univ Prague, Inst Theoret Comp Sci, CR-11800 Prague, Czech Republic
[3] Hungarian Acad Sci, Inst Comp & Automat, H-1111 Budapest, Hungary
基金
匈牙利科学研究基金会;
关键词
D O I
10.1016/S0196-6774(02)00221-3
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a graph G, its clique hypergraph C(G) has the same set of vertices as G and the hyperedges correspond to the (inclusionwise) maximal cliques of G. We consider the question of bicolorability of C(G). i.e., whether the vertices of G can be colored with two colors so that no maximal clique is monochromatic. Our two main results say that deciding the bicolorability of C(G) is NP-hard for perfect graphs (and even for those with clique number 3), but solvable in polynomial time for planar graphs. (C) 2002 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:40 / 54
页数:15
相关论文
共 50 条
  • [1] On the complexity of bicoloring clique hypergraphs of graphs (extended abstract)
    Kratochvíl, J
    Tuza, Z
    [J]. PROCEEDINGS OF THE ELEVENTH ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, 2000, : 40 - 41
  • [2] Colouring Clique-Hypergraphs of Circulant Graphs
    Campos, C. N.
    Dantas, S.
    de Mello, C. P.
    [J]. GRAPHS AND COMBINATORICS, 2013, 29 (06) : 1713 - 1720
  • [3] Colouring Clique-Hypergraphs of Circulant Graphs
    C. N. Campos
    S. Dantas
    C. P. de Mello
    [J]. Graphs and Combinatorics, 2013, 29 : 1713 - 1720
  • [4] Fractional clique decompositions of dense graphs and hypergraphs
    Barber, Ben
    Kuhn, Daniela
    Lo, Allan
    Montgomery, Richard
    Osthus, Deryk
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES B, 2017, 127 : 148 - 186
  • [5] Coloring clique-hypergraphs of graphs with no subdivision of K5
    Shan, Erfang
    Kang, Liying
    [J]. THEORETICAL COMPUTER SCIENCE, 2015, 592 : 166 - 175
  • [6] Complexity Aspects of the Helly Property: Graphs and Hypergraphs
    Dourado, Mitre C.
    Protti, Fabio
    Szwarcfiter, Jayme L.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009, 16 (01):
  • [7] Complexity Aspects of the Helly Property: Graphs and Hypergraphs
    Dourado, Mitre C.
    Protti, Fabio
    Szwarcfiter, Jayme L.
    [J]. ELECTRONIC JOURNAL OF COMBINATORICS, 2009,
  • [8] The Monotone Complexity of k-Clique on Random Graphs
    Rossman, Benjamin
    [J]. 2010 IEEE 51ST ANNUAL SYMPOSIUM ON FOUNDATIONS OF COMPUTER SCIENCE, 2010, : 193 - 201
  • [9] THE MONOTONE COMPLEXITY OF k-CLIQUE ON RANDOM GRAPHS
    Rossman, Benjamin
    [J]. SIAM JOURNAL ON COMPUTING, 2014, 43 (01) : 256 - 279