Finite volume schemes for diffusion equations: Introduction to and review of modern methods

被引:216
|
作者
Droniou, Jerome [1 ]
机构
[1] Monash Univ, Sch Math Sci, Clayton, Vic 3800, Australia
来源
关键词
Review; elliptic equation; finite volume schemes; multi-point flux approximation; hybrid mimetic mixed methods; discrete duality finite volume schemes; coercivity; convergence analysis; monotony; minimum and maximum principles; MULTIPOINT FLUX APPROXIMATION; DIFFERENCE METHOD; ANISOTROPIC DIFFUSION; CONVERGENCE ANALYSIS; QUADRILATERAL GRIDS; UNSTRUCTURED GRIDS; O-METHOD; MONOTONICITY CONDITIONS; POLYHEDRAL MESHES; MAXIMUM PRINCIPLE;
D O I
10.1142/S0218202514400041
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present Finite Volume methods for diffusion equations on generic meshes, that received important coverage in the last decade or so. After introducing the main ideas and construction principles of the methods, we review some literature results, focusing on two important properties of schemes (discrete versions of well-known properties of the continuous equation): coercivity and minimum-maximum principles. Coercivity ensures the stability of the method as well as its convergence under assumptions compatible with real-world applications, whereas minimum-maximum principles are crucial in case of strong anisotropy to obtain physically meaningful approximate solutions.
引用
收藏
页码:1575 / 1619
页数:45
相关论文
共 50 条
  • [1] Convergence of finite volume schemes for semilinear convection diffusion equations
    Eymard, R
    Gallouët, T
    Herbin, R
    NUMERISCHE MATHEMATIK, 1999, 82 (01) : 91 - 116
  • [2] Monotone finite volume schemes for diffusion equations on polygonal meshes
    Yuan, Guangwei
    Sheng, Zhiqiang
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (12) : 6288 - 6312
  • [3] Convergence of finite volume schemes for semilinear convection diffusion equations
    Robert Eymard
    Thierry Gallouët
    Raphaèle Herbin
    Numerische Mathematik, 1999, 82 : 91 - 116
  • [4] ADER finite volume schemes for nonlinear reaction-diffusion equations
    Toro, Eleuterio F.
    Hidalgo, Arturo
    APPLIED NUMERICAL MATHEMATICS, 2009, 59 (01) : 73 - 100
  • [5] Finite volume element methods for nonequilibrium radiation diffusion equations
    Zhao, Xiukun
    Chen, Yanli
    Gao, Yanni
    Yu, Changhua
    Li, Yonghai
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2013, 73 (12) : 1059 - 1080
  • [6] Finite volume schemes for multilayer diffusion
    March, Nathan G.
    Carr, Elliot J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2019, 345 : 206 - 223
  • [7] MONOTONE FINITE VOLUME SCHEMES OF NONEQUILIBRIUM RADIATION DIFFUSION EQUATIONS ON DISTORTED MESHES
    Sheng, Zhiqiang
    Yue, Jingyan
    Yuan, Guangwei
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2009, 31 (04): : 2915 - 2934
  • [8] Finite-Volume Diffusion Schemes for Svard's Eulerian Governing Equations
    Padway, Emmett
    AIAA SCITECH 2024 FORUM, 2024,
  • [9] Positivity preserving finite volume Roe schemes for transport-diffusion equations
    Monthe, LA
    Benkhaldoun, F
    Elmahi, I
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 178 (3-4) : 215 - 232
  • [10] FAST FINITE VOLUME METHODS FOR SPACE-FRACTIONAL DIFFUSION EQUATIONS
    Wang, Hong
    Cheng, Aijie
    Wang, Kaixin
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2015, 20 (05): : 1427 - 1441