Relation between energetic and standard geodesic acoustic modes

被引:34
|
作者
Girardo, Jean-Baptiste [1 ]
Zarzoso, David [2 ]
Dumont, Remi [1 ]
Garbet, Xavier [1 ]
Sarazin, Yanick [1 ]
Sharapov, Sergei [3 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Max Planck Inst Plasma Phys, D-85748 Garching, Germany
[3] Culham Sci Ctr, CCFE, Abingdon OX14 3DB, Oxon, England
关键词
EXPLANATION; FLOWS;
D O I
10.1063/1.4895479
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Geodesic Acoustic Modes (GAMs) are electrostatic, axisymmetric modes which are non-linearly excited by turbulence. They can also be excited linearly by fast-particles; they are then called Energetic-particle-driven GAMs (EGAMs). Do GAMs and EGAMs belong to the same mode branch? Through a linear, analytical model, in which the fast particles are represented by a Maxwellian bump-on-tail distribution function, we find that the answer depends on several parameters. For low values of the safety factor q and for high values of the fast ion energy, the EGAM originates from the GAM. On the contrary, for high values of q and for low values of the fast ion energy, the GAM is not the mode which becomes unstable when fast particles are added: the EGAM then originates from a distinct mode, which is strongly damped in the absence of fast particles. The impact of other parameters is further explored: ratio of the ion temperature to the electron temperature, width of the fast particle distribution, mass and charge of the fast ions. The ratio between the EGAM and the GAM frequencies was found in experiments (DIII-D) and in non-linear numerical simulations (code GYSELA) to be close to 1/2: the present analytical study allows one to recover this ratio. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Linear dispersion relation of geodesic acoustic modes driven by trapped and circulating energetic particles
    Chavdarovski, I
    Schneller, M.
    Biancalani, A.
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (04)
  • [2] Analytic dispersion relation of energetic particle driven geodesic acoustic modes and simulations with NEMORB
    Zarzoso, D.
    Biancalani, A.
    Bottino, A.
    Lauber, Ph.
    Poli, E.
    Girardo, J. -B.
    Garbet, X.
    Dumont, R. J.
    NUCLEAR FUSION, 2014, 54 (10)
  • [3] Nonlinear Dispersion Relation of Geodesic Acoustic Modes
    Hager, Robert
    Hallatschek, Klaus
    PHYSICAL REVIEW LETTERS, 2012, 108 (03)
  • [4] The nonlinear dispersion relation of geodesic acoustic modes
    Hager, Robert
    Hallatschek, Klaus
    PHYSICS OF PLASMAS, 2012, 19 (08)
  • [5] Linear radial structure of reactive energetic geodesic acoustic modes
    Qu, Z. S.
    Hole, M. J.
    Fitzgerald, M.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2017, 59 (05)
  • [6] Properties of geodesic acoustic modes and the relation to density fluctuations
    Kraemer-Flecken, A.
    Soldatov, S.
    Koslowski, H. R.
    Zimmermann, O.
    PHYSICAL REVIEW LETTERS, 2006, 97 (04)
  • [7] Impact of Energetic-Particle-Driven Geodesic Acoustic Modes on Turbulence
    Zarzoso, D.
    Sarazin, Y.
    Garbet, X.
    Dumont, R.
    Strugarek, A.
    Abiteboul, J.
    Cartier-Michaud, T.
    Dif-Pradalier, G.
    Ghendrih, Ph
    Grandgirard, V.
    Latu, G.
    Passeron, C.
    Thomine, O.
    PHYSICAL REVIEW LETTERS, 2013, 110 (12)
  • [8] Beam ion losses due to energetic particle geodesic acoustic modes
    Fisher, R. K.
    Pace, D. C.
    Kramer, G. J.
    Van Zeeland, M. A.
    Nazikian, R.
    Heidbrink, W. W.
    Garcia-Munoz, M.
    NUCLEAR FUSION, 2012, 52 (12)
  • [9] Particle transport due to energetic-particle-driven geodesic acoustic modes
    Zarzoso, D.
    del-Castillo-Negrete, D.
    Escande, D. F.
    Sarazin, Y.
    Garbet, X.
    Grandgirard, V.
    Passeron, C.
    Latu, G.
    Benkadda, S.
    NUCLEAR FUSION, 2018, 58 (10)
  • [10] Linear dispersion relation of geodesic acoustic modes driven by trapped and circulating energetic particles (vol 87, 905870408, 2021)
    Chavdarovski, I.
    Schneller, M.
    Biancalani, A.
    JOURNAL OF PLASMA PHYSICS, 2021, 87 (06)