A multi-criterion genetic algorithm for order distribution in a demand driven supply chain

被引:49
|
作者
Chan, FTS [1 ]
Chung, SH [1 ]
机构
[1] Univ Hong Kong, Dept Ind & Mfg Syst Engn, Hong Kong, Hong Kong, Peoples R China
关键词
D O I
10.1080/09511920310001617022
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper develops a multi-criterion genetic optimization procedure, specifically designed for solving optimization problems in supply chain management. The proposed algorithm is discussed with an order distribution problem in a demand driven supply chain network. It combines the analytic hierarchy process (AHP) with genetic algorithms. AHP is utilized to evaluate the fitness values of chromosomes. The proposed algorithm allows decision-makers to give weighting for criteria using a pair-wise comparison approach. The numerical results obtained from the proposed algorithm are compared with the one obtained from the multi-objective mixed integer programming approach. The comparison shows that the proposed algorithm is reliable and robust. In addition, it provides more control and information for the decision-makers to gain a better insight of the supply chain network.
引用
收藏
页码:339 / 351
页数:13
相关论文
共 50 条
  • [1] A modified multi-criterion optimization genetic algorithm for order distribution in collaborative supply chain
    Zhang, Haixin
    Deng, Yong
    Chan, Felix T. S.
    Zhang, Xiaoge
    [J]. APPLIED MATHEMATICAL MODELLING, 2013, 37 (14-15) : 7855 - 7864
  • [2] Demand due date optimization in multi-echelon distribution network with multi-criterion genetic algorithms
    Chan, FTS
    Chung, SH
    Finke, G
    Wagneur, E
    [J]. International Conference on Industrial Logistics 2003, Proceedings, 2003, : 121 - 129
  • [3] A heuristic methodology for order distribution in a demand driven collaborative supply chain
    Chan, FTS
    Chung, SH
    Wadhwa, S
    [J]. INTERNATIONAL JOURNAL OF PRODUCTION RESEARCH, 2004, 42 (01) : 1 - 19
  • [4] Henig efficiency of a multi-criterion supply-demand network equilibrium model
    Cheng, T. C. Edwin
    Wu, Yunan
    [J]. JOURNAL OF INDUSTRIAL AND MANAGEMENT OPTIMIZATION, 2006, 2 (03) : 269 - 286
  • [5] Optimization of building thermal design and control by multi-criterion genetic algorithm
    Wright, JA
    Loosemore, HA
    Farmani, R
    [J]. ENERGY AND BUILDINGS, 2002, 34 (09) : 959 - 972
  • [6] Multi-Criterion Optimization of a Catalytic Reforming Reactor Unit Using a Genetic Algorithm
    R. Z. Zainullin
    A. N. Zagoruiko
    K. F. Koledina
    I. M. Gubaidullin
    R. I. Faskhutdinova
    [J]. Catalysis in Industry, 2020, 12 : 133 - 140
  • [7] A multi-criterion decision model for advanced manufacturing technology acquisition in supply chain networks
    Vidyarthi, NK
    Lashkari, RS
    [J]. IEEE ICIT' 02: 2002 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL TECHNOLOGY, VOLS I AND II, PROCEEDINGS, 2002, : 1235 - 1240
  • [8] An interactive preference-weight genetic algorithm for multi-criterion satisficing optimization
    Tao, Ye
    Huang, Hong-Zhong
    Yang, Bo
    [J]. ADVANCES IN NATURAL COMPUTATION, PT 1, 2006, 4221 : 643 - 652
  • [9] Multi-Criterion Optimization of a Catalytic Reforming Reactor Unit Using a Genetic Algorithm
    Zainullin, R. Z.
    Zagoruiko, A. N.
    Koledina, K. F.
    Gubaidullin, I. M.
    Faskhutdinova, R. I.
    [J]. CATALYSIS IN INDUSTRY, 2020, 12 (02) : 133 - 140
  • [10] Multi-criterion optimization for genetic network modeling
    van Someren, EP
    Wessels, LFA
    Backer, E
    Reinders, MJT
    [J]. SIGNAL PROCESSING, 2003, 83 (04) : 763 - 775