A Scalable Pavement Sensing, Data Analytics, and Visualization Platform for Lean Governance in Smart Communities

被引:0
|
作者
Nguyen, Phong [1 ]
Rao, Raghav [1 ]
Brown, Vincent [2 ]
McConnell, Matthew [1 ]
Barendt, Nicholas A. [1 ]
Zingale, Nicholas C. [3 ]
Mandal, Soumyajit [4 ]
Kaffashi, Farhad [1 ]
Loparo, Kenneth A. [1 ]
机构
[1] Case Western Reserve Univ, Elect Comp & Syst Engn, Cleveland, OH 44106 USA
[2] Hawken Sch, Gates Mills, OH USA
[3] Cleveland State Univ, Levin Coll Urban Affairs, Cleveland, OH 44115 USA
[4] Univ Florida, Elect & Comp Engn, Gainesville, FL USA
关键词
Smart cities; pavement quality monitoring; transportation infrastructure; Internet of Things (IoT); ROAD SURFACE QUALITY; GOVERNMENT;
D O I
10.1109/mercon50084.2020.9185283
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The paper describes the design and validation of a low-cost platform for automated roadway quality monitoring based on the collection of inertial measurement unit (IMU) and location data from a vehicle-mounted sensor platform. Data was collected from field experiments on a service vehicle owned by the city of Lakewood, OH, USA to demonstrate the feasibility and scalability of the proposed monitoring approach. Analysis and visualization of the acquired data indicates how such a platform can be used to assist city service personnel in the daunting task of maintaining ageing civil infrastructure in urban communities.
引用
收藏
页码:313 / 318
页数:6
相关论文
共 50 条
  • [1] Using Big Data Analytics and Visualization to Create IoT-enabled Science Park Smart Governance Platform
    Yang, Hsiao-Fang
    Chen, Chia-Hou Kay
    Chen, Kuei-Ling Belinda
    HCI IN BUSINESS, GOVERNMENT AND ORGANIZATIONS: INFORMATION SYSTEMS AND ANALYTICS, 2019, 11589 : 459 - 472
  • [2] Scalable Analytics Platform for Machine Learning in Smart Production Systems
    A-Gumaei, Khaled
    Mueller, Arthur
    Weskamp, Jan Nicolas
    Longo, Claudio Santo
    Pethig, Florian
    Windmann, Stefan
    2019 24TH IEEE INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2019, : 1155 - 1162
  • [3] Data integration in scalable data analytics platform for process industries
    Sarnovsky, M.
    Bednar, P.
    Smatana, M.
    2017 IEEE 21ST INTERNATIONAL CONFERENCE ON INTELLIGENT ENGINEERING SYSTEMS (INES), 2017, : 187 - 192
  • [4] A Big Data platform for smart meter data analytics
    Wilcox, Tom
    Jin, Nanlin
    Flach, Peter
    Thumim, Joshua
    COMPUTERS IN INDUSTRY, 2019, 105 : 250 - 259
  • [5] Scalable Data Analytics Platform for Enterprise Backup Management
    Song, Yang
    Routray, Ramani
    Hou, Yangyang
    2014 IEEE NETWORK OPERATIONS AND MANAGEMENT SYMPOSIUM (NOMS), 2014,
  • [6] SCALABLE DEVELOPMENTS FOR BIG DATA ANALYTICS IN REMOTE SENSING
    Cavallaro, G.
    Riedel, M.
    Bodenstein, C.
    Glock, P.
    Richerzhagen, M.
    Goetz, M.
    Benediktsson, J. A.
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1366 - 1369
  • [7] SMART TRANSPORTATION PLATFORM FOR BIG DATA ANALYTICS AND INTERCONNECTIVITY
    Verba, Nandor
    Chao, Kuo-Ming
    Linford, Soizic
    Anoyrkati, Eleni
    INTERNATIONAL CONFERENCE ON TRAFFIC AND TRANSPORT ENGINEERING (ICTTE 2018), 2018, : 232 - 238
  • [8] A Scalable and Dependable Data Analytics Platform for Water Infrastructure Monitoring
    Lorenz, Felix
    Geldenhuys, Morgan
    Sommer, Harald
    Jakobs, Frauke
    Luering, Carsten
    Skwarek, Volker
    Behnke, Ilja
    Thamsen, Lauritz
    2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2020, : 3488 - 3493
  • [9] PAIRS: A scalable geo-spatial data analytics platform
    Klein, Levente J.
    Marianno, Fernando J.
    Albrecht, Conrad M.
    Freitag, Marcus
    Lu, Siyuan
    Hinds, Nigel
    Shao, Xiaoyan
    Rodriguez, Sergio Bermudez
    Hamann, Hendrik F.
    PROCEEDINGS 2015 IEEE INTERNATIONAL CONFERENCE ON BIG DATA, 2015, : 1290 - 1298
  • [10] Smart buildings: Use case for middleware for data visualization and data analytics
    Chitu, Claudia
    Sgârciu, Valentin
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2019, 81 (02): : 75 - 84