Handwritten Digits Recognition Using Multiple Instance Learning

被引:0
|
作者
Yuan Hanning [1 ]
Wang Peng [2 ]
机构
[1] Beijing Inst Technol, Int Sch Software, Beijing 100081, Peoples R China
[2] Univ Tokyo, Sch Engn, Dept Syst Innovat, Tokyo, Japan
基金
美国国家科学基金会;
关键词
Multipe instance learning; heterogeneous handwritten digits; classification;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Now more and more heterogeneous handwritten digits data sets appear into sight. But traditional handwritten digits recognition algorithms are usually based on the homomorphism data sets. For solving the problem that handwritten digits data sets of different feature spaces can't compute, we constructed heterogeneous handwritten digits representation model based on multiple instance learning (MIL) where a bag contains handwritten digits data from different feature spaces. Handwritten digits classification algorithms (HB and HeterMIL) are designed and compared for handwritten digits recognition. Experiment results confirmed that the heterogeneous handwritten digits data representation model and recognition algorithms can solve the heterogeneous handwritten digits recognition effectively.
引用
收藏
页码:408 / 411
页数:4
相关论文
共 50 条
  • [1] Handwritten digits recognition using transfer learning
    Azawi, Nidhal
    [J]. COMPUTERS & ELECTRICAL ENGINEERING, 2023, 106
  • [2] Recognition of Persian handwritten digits using image profiles of multiple orientations
    Soltanzadeh, H
    Rahmati, M
    [J]. PATTERN RECOGNITION LETTERS, 2004, 25 (14) : 1569 - 1576
  • [3] Sindhi Handwritten-Digits Recognition Using Machine Learning Techniques
    Ali, Irfan
    Ali, Insaf
    Subhash
    Khan, Asif
    Raza, Syed Ahmed
    Hassan, Basit
    Bhatti, Priha
    [J]. INTERNATIONAL JOURNAL OF COMPUTER SCIENCE AND NETWORK SECURITY, 2019, 19 (05): : 195 - +
  • [4] HANDWRITTEN CONNECTED DIGITS DETECTION: AN APPROACH USING INSTANCE SELECTION
    Pereira, Cristiano de Santana
    Cavalcanti, George D. C.
    [J]. 2011 18TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2011,
  • [5] ALGEBRAIC FUSION OF MULTIPLE CLASSIFIERS FOR HANDWRITTEN DIGITS RECOGNITION
    Zhao, Huihuang
    Liu, Han
    [J]. PROCEEDINGS OF 2018 INTERNATIONAL CONFERENCE ON WAVELET ANALYSIS AND PATTERN RECOGNITION (ICWAPR), 2018, : 250 - 255
  • [6] Recognition of handwritten digits using structural information
    Behnke, S
    Pfister, M
    Rojas, R
    [J]. 1997 IEEE INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, VOLS 1-4, 1997, : 1391 - 1396
  • [7] Handwritten Urdu Characters and Digits Recognition Using Transfer Learning and Augmentation With AlexNet
    Rasheed, Aqsa
    Ali, Nouman
    Zafar, Bushra
    Shabbir, Amsa
    Sajid, Muhammad
    Mahmood, Muhammad Tariq
    [J]. IEEE ACCESS, 2022, 10 : 102629 - 102645
  • [8] Recognition of handwritten Urdu digits using Shape Context
    Yusuf, M
    Haider, T
    [J]. INMIC 2004: 8th International Multitopic Conference, Proceedings, 2004, : 569 - 572
  • [9] Comparison of Machine Learning Algorithms for Raw Handwritten Digits Recognition
    Bari, Mohammad
    Ambaw, Ambaw
    Doroslovacki, Milos
    [J]. 2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 1512 - 1516
  • [10] Classification and recognition of handwritten digits by using mathematical morphology
    Vijaya kumar V.
    Srikrishna A.
    Babu B.R.
    Mani M.R.
    [J]. Sadhana, 2010, 35 (4) : 419 - 426