Generalized fractional integral inequalities by means of quasiconvexity

被引:7
|
作者
Nwaeze, Eze R. [1 ]
机构
[1] Tuskegee Univ, Dept Math, Tuskegee, AL 36088 USA
关键词
Hermite-Hadamard inequality; convex functions; quasiconvex functions; special means; Riemann-Liouville fractional integral operators;
D O I
10.1186/s13662-019-2204-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Using the newly introduced fractional integral operators in (Fasc. Math. 20(4):5-27, 2016) and (East Asian Math. J. 21(2):191-203, 2005), we establish some novel inequalities of the Hermite-Hadamard type for functions whose second derivatives in absolute value are eta-quasiconvex. Results obtained herein give a broader generalization to some existing results in the literature by choosing appropriate values of the parameters under consideration. We apply our results to some special means such as the arithmetic, geometric, harmonic, logarithmic, generalized logarithmic, and identric means to obtain more results in this direction.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Generalized fractional integral inequalities by means of quasiconvexity
    Eze R. Nwaeze
    Advances in Difference Equations, 2019
  • [2] Integral inequalities via generalized quasiconvexity with applications
    Eze R. Nwaeze
    Journal of Inequalities and Applications, 2019
  • [3] Integral inequalities via generalized quasiconvexity with applications
    Nwaeze, Eze R.
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [4] Fractional integral inequalities for generalized convexity
    Kashuri, Artion
    Ali, Muhammad Aamir
    Abbas, Mujahid
    Budak, Hiiseyin
    Sarikaya, Mehmet Zeki
    TBILISI MATHEMATICAL JOURNAL, 2020, 13 (03) : 63 - 83
  • [5] Certain generalized fractional integral inequalities
    Nisar, Kottakkaran Sooppy
    Rahman, Gauhar
    Khan, Aftab
    Tassaddiq, Asifa
    Abouzaid, Moheb Saad
    AIMS MATHEMATICS, 2020, 5 (02): : 1588 - 1602
  • [6] Generalized integral inequalities for fractional calculus
    Samraiz, Muhammad
    Iqbal, Sajid
    Pecaric, Josip
    COGENT MATHEMATICS & STATISTICS, 2018, 5 (01):
  • [7] Caputo generalized ψ-fractional integral inequalities
    Anastassiou, George A.
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (01) : 107 - 120
  • [8] Inequalities by Means of Generalized Proportional Fractional Integral Operators with Respect to Another Function
    Rashid, Saima
    Jarad, Fahd
    Noor, Muhammad Aslam
    Kalsoom, Humaira
    Chu, Yu-Ming
    MATHEMATICS, 2019, 7 (12)
  • [9] Simpson type integral inequalities for generalized fractional integral
    Fatma Ertuğral
    Mehmet Zeki Sarikaya
    Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2019, 113 : 3115 - 3124
  • [10] Simpson type integral inequalities for generalized fractional integral
    Ertugral, Fatma
    Sarikaya, Mehmet Zeki
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (04) : 3115 - 3124